論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
基於多模態學習的房產鑑價模型 ── 以高雄市為例 House Price Prediction based on Multimodal Learning -A Case Study of Kaohsiung City |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
41 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2021-02-22 |
繳交日期 Date of Submission |
2021-03-02 |
關鍵字 Keywords |
坡度提升演算法、綠地、多模態學習、Google 街景、房屋價值、隨機森 林演算法 Random Forest, XGBoost, Green space, Google Street View, House Price, Multimodal learning |
||
統計 Statistics |
本論文已被瀏覽 568 次,被下載 113 次 The thesis/dissertation has been browsed 568 times, has been downloaded 113 times. |
中文摘要 |
人們可以輕易辨識圖片的內容,從房屋外觀分析出該房屋的價錢、屋齡等, 機器也可以在辨識度上有很好的結果。本研究以多模態學習為基礎,取用內政部 不動產成交案件實際資訊資料供應系統提供的資料,加上利用 Google 街景服務取 得每個地址的街景圖。使用 XGBoost 演算法對圖片做處理,並利用隨機森林 (Random Forest)、線性迴歸等演算法,建立模型,預測房價。 依據全台六都的都市發展計劃,高雄市公告公園綠地佔都市計畫區面積百分 比居於首位,因此本研究除了探討房屋本身的條件如何影響預測房價的結果,同 時使用 Google distance API,探討公園綠地此一變數對房價呈現多大的影響。實證 結果,圖片本身能夠達成預測房價,加入房屋原始資料後,提升預測準確率。此 外,實驗證明,700 公尺內擁有越多公園綠地的房屋,顯著呈現高房價。 |
Abstract |
People can easily view the picture to judge the price of a house through the building age, environment conditions and appearances. Machines can also reach a good result as humans do. This study focuses on multi-modal learning by using the actual transaction information from the Ministry of the Interior’s real estate data system and the street view images downloaded from Google Street View service. We convert images by XGBoost and add new converted data to build a new model to predict house prices. According to Taiwan government’s urban development plan, Kaohsiung City possesses the largest percentage of green space coverage compared to the other five special municipalities of Taiwan. Therefore, to discover how green space affects the prediction of house prices, this study also used Google distance to discuss the importance of green space. From the empirical results, the accuracy of combining the transaction data with images is improved. Furthermore, our experiments show that the distance within 700 meters from the house to green space, the influence of the green space on house prices is significant. |
目次 Table of Contents |
論文審定書 i 摘要 ii Abstract iii List of Figures v List of Tables vi 1. Introduction 1 2. Background and Related Works 2 2.1. Related Work on House Prices 2 2.2. Multimodal Learning 4 2.3. Google Street View 6 2.4. Ensemble learning 8 2.5. EXtreme Gradient Boosting (XGBoost) 9 2.6. Random Forest 10 3. Methodology 11 4. Experiment and Discussion 14 4.1. Environment setup 15 4.2. Transaction Dataset 15 4.3. Green Space Feature 16 4.4. Images Feature 17 4.5. Performance Comparison 18 4.6. Important Variables 21 4.7. Discussion 24 5. Conclusion 24 Reference 26 中文文獻 33 Appendix A 34 |
參考文獻 References |
Atrey, P. K., Hossain, M. A., El Saddik, A., & Kankanhalli, M. S. (2010). Multimodal fusion for multimedia analysis: a survey. Multimedia systems, 16(6), 345-379. Baltrušaitis, T., Ahuja, C., & Morency, L. P. (2018). Multimodal machine learning: A survey and taxonomy. IEEE transactions on pattern analysis and machine intelligence, 41(2), 423-443. Barbosa, O., Tratalos, J. A., Armsworth, P. R., Davies, R. G., Fuller, R. A., Johnson, P., & Gaston, K. J. (2007). Who benefits from access to green space? A case study from Sheffield, UK. Landscape and Urban planning, 83(2-3), 187-195. Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8), 1798-1828. Bengio, Y. (2009). Learning deep architectures for AI. Now Publishers Inc. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. Bunn, A., & Korpela, M. (2019). An introduction to dplR. Cha, M., Gwon, Y., & Kung, H. T. (2015). Multimodal sparse representation learning and applications. arXiv preprint arXiv:1511.06238. Chen, T., He, T., Benesty, M., Khotilovich, V., & Tang, Y. (2015). Xgboost: extreme gradient boosting. R package version 0.4-2, 1-4. Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794). Chen, Y. C., Lin, Y. Y., Yang, M. H., & Huang, J. B. (2019). Show, match and segment: Joint learning of semantic matching and object co-segmentation. arXiv, arXiv-1906. Dadvand, P., Bartoll, X., Basagaña, X., Dalmau-Bueno, A., Martinez, D., Ambros, A., ... & Nieuwenhuijsen, M. J. (2016). Green spaces and general health: roles of mental health status, social support, and physical activity. Environment international, 91, 161-167. De Vries, S., Verheij, R. A., Groenewegen, P. P., & Spreeuwenberg, P. (2003). Natural environments—healthy environments? An exploratory analysis of the relationship between greenspace and health. Environment and planning A, 35(10), 1717-1731. Friedman J, Hastie T, Tibshirani R, et al. (2000). “Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors).” The annals of statistics, 28(2), 337–407. Fu, X., Jia, T., Zhang, X., Li, S., & Zhang, Y. (2019). Do street-level scene perceptions affect housing prices in Chinese megacities? An analysis using open access datasets and deep learning. PloS one, 14(5), e0217505. Gebru, T., Krause, J., Wang, Y., Chen, D., Deng, J., Aiden, E. L., & Fei-Fei, L. (2017). Using deep learning and Google Street View to estimate the demographic makeup of neighborhoods across the United States. Proceedings of the National Academy of Sciences, 114(50), 13108-13113. Guillaumin, M., Verbeek, J., & Schmid, C. (2010, June). Multimodal semi-supervised learning for image classification. In 2010 IEEE Computer society conference on computer vision and pattern recognition (pp. 902-909). IEEE. Helbich, M., Yao, Y., Liu, Y., Zhang, J., Liu, P., & Wang, R. (2019). Using deep learning to examine street view green and blue spaces and their associations with geriatric depression in Beijing, China. Environment international, 126, 107-117. Hussain, M. R. M., Tukiman, I., Zen, I. H., & Shahli, F. M. (2014). The impact of landscape design on house prices and values in residential development in urban areas. APCBEE procedia, 10, 316-320. Kang, J., Körner, M., Wang, Y., Taubenböck, H., & Zhu, X. X. (2018). Building instance classification using street view images. ISPRS journal of photogrammetry and remote sensing, 145, 44-59. Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). kernlab—An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11(9). Kita, K., & Kidziński, Ł. (2019). Google street view image of a house predicts car accident risk of its resident. arXiv preprint arXiv:1904.05270. Kong, F., Yin, H., & Nakagoshi, N. (2007). Using GIS and landscape metrics in the hedonic price modeling of the amenity value of urban green space: A case study in Jinan City, China. Landscape and urban planning, 79(3-4), 240-252. Larkin, A., & Hystad, P. (2019). Evaluating street view exposure measures of visible green space for health research. Journal of exposure science & environmental epidemiology, 29(4), 447-456. Law, S., Paige, B., & Russell, C. (2019). Take a look around: using street view and satellite images to estimate house prices. ACM Transactions on Intelligent Systems and Technology (TIST), 10(5), 1-19. Li, Y., Chen, Y., Rajabifard, A., Khoshelham, K., & Aleksandrov, M. (2018). Estimating building age from Google street view images using deep learning (short paper). In 10th international conference on geographic information science (GIScience 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. Lu, Y. (2019). Using Google Street View to investigate the association between street greenery and physical activity. Landscape and Urban Planning, 191, 103435. Mao, J., Xu, W., Yang, Y., Wang, J., & Yuille, A. L. (2014). Explain images with multimodal recurrent neural networks. arXiv preprint arXiv:1410.1090. Morency, L. P., & Baltrušaitis, T. (2017, July). Multimodal machine learning: integrating language, vision and speech. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts (pp. 3-5). Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., & Ng, A. Y. (2011, January). Multimodal deep learning. In ICML. Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10), 1345-1359. Panduro, T. E., & Veie, K. L. (2013). Classification and valuation of urban green spaces—A hedonic house price valuation. Landscape and Urban planning, 120, 119-128. Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). " Why should I trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144). RStudio Team. (2015). RStudio: Integrated Development for R. Retrieved from http://www.rstudio.com/. Rzotkiewicz, A., Pearson, A. L., Dougherty, B. V., Shortridge, A., & Wilson, N. (2018). Systematic review of the use of Google Street View in health research: major themes, strengths, weaknesses and possibilities for future research. Health & place, 52, 240-246. Therneau, T. M., Atkinson, E. J., & Foundation, M. (n.d.). An Introduction to Recursive Partitioning Using the RPART Routines. 60. Tsai, C. C., Li, W., Hsu, K. J., Qian, X., & Lin, Y. Y. (2018). Image co-saliency detection and co-segmentation via progressive joint optimization. IEEE Transactions on Image Processing, 28(1), 56-71. Wood, L., Hooper, P., Foster, S., & Bull, F. (2017). Public green spaces and positive mental health–investigating the relationship between access, quantity and types of parks and mental wellbeing. Health & place, 48, 63-71. Xiao, J., & Quan, L. (2009, October). Multiple view semantic segmentation for street view images. In 2009 IEEE 12th international conference on computer vision (pp. 686-693). IEEE. Yarowsky, D., & Wicentowski, R. (2000, October). Minimally supervised morphological analysis by multimodal alignment. In Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics (pp. 207-216). Zamir, A. R., & Shah, M. (2010, September). Accurate image localization based on google maps street view. In European Conference on Computer Vision (pp. 255-268). Springer, Berlin, Heidelberg. Zhang, Y., & Dong, R. (2018). Impacts of street-visible greenery on housing prices: Evidence from a hedonic price model and a massive street view image dataset in Beijing. ISPRS International Journal of Geo-Information, 7(3), 104. Zhao, Y., Chetty, G., & Tran, D. (2019, December). Deep Learning with XGBoost for Real Estate Appraisal. In 2019 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1396-1401). IEEE. Zhou, Z. H. (2012). Ensemble methods: foundations and algorithms. CRC press. 黃琦淵. (2016). 高雄市公園綠地空間對房價影響之研究. 鄭偉安. (2016). 都市公園綠地對於房價之影響‒以高雄市區為例. 中山大學經濟學研究所學位論文, 1-44. 賴明宏(1997)。影響房價因素之屬性特徵與總體變數分析。國立台灣工業技術學院管理技術研究所碩士論文,台北市。 林祖嘉, & 林素菁. (1993). 台灣地區環境品質與公共設施對房價與房租影響之分析. 住宅學報, (1), 21-45. 楊宗憲, & 蘇倖慧. (2011). 迎毗設施與鄰避設施對住宅價格影響之研究. 住宅學報, 20(2), 61-80. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |