論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
應用修正式德菲法探討智慧客服滿意度的影響因素 Applied Modified Delphi Method to Researching Intelligent Customer Service Satisfaction |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
84 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2020-07-24 |
繳交日期 Date of Submission |
2020-08-24 |
關鍵字 Keywords |
德菲法、使用者滿意度、即時客服、人工智慧、智慧客服 User Satisfaction, Delphi Method, Intelligent Customer Service, Artificial Intelligence, Instant Customer Service |
||
統計 Statistics |
本論文已被瀏覽 5989 次,被下載 4 次 The thesis/dissertation has been browsed 5989 times, has been downloaded 4 times. |
中文摘要 |
即時客服的需求隨著科技的進步對於人們來說越趨重要,對於許多產業而言,並 沒有辦法全時段提供充足的人力去立即服務顧客,人工智慧的輔助也因此成為了許多 企業的解決辦法。以服務業而言,智慧客服和聊天機器人為一種顧客服務的新興管 道,甚至成為影響顧客滿意度的重要關鍵。和聊天機器人不同的地方在於,智慧客服 較注重在提供顧客訊息及解決顧客問題。各企業也紛紛推出智慧客服的各項功能以期 望能提高顧客在使用過程中的滿意度。本研究以目前市面上最常見的文字型智慧客服 做為研究目標,利用 Delone和 McLean在 2003年提出的資訊系統成功 模型作為基 礎,加上近年來關於使用者滿意度的相關研究,統整出了對於智慧客服而言,可能會 影響其滿意度的各項品質要素。 本研究藉由邀請在資訊管理學界的學者及資訊科技業和金融業的業界專家,對此 架構進行三回合的修正式德菲法。經過三回合的德菲法分析,對各項構面和變數進行 修正和刪減,最終將智慧客服滿意度的影響要素分為四大構面及 18個變數。從研究結 果中我們可以發現,使用者對於智慧客服提供的資訊內容最為在意,其次是整體系統 的穩定性和系統的智慧程度。若這三項能成為智慧客服系統的必要元素,則容易有較 高的使用者滿意度,且可能會提 高使用者再次使用的意願。最後是使用過程中,系統 能夠似人化互動的程度,這可能成為使用過程中的加分條件,而非使用者主要在意的 項目。本研究結果也提供了企業在未來導入智慧客服時,能有設計方面及使用者滿意 程度的參考依據。 |
Abstract |
The demand for instant customer service has become more and more important to people with the advancement of technology. For many industries, there is no way to provide sufficient human resources at all times to serve customers immediately. The assistance of artificial intelligence has become a solution for many companies. As far as the service industry is concerned, intelligent customer service and chatbot are an emerging channel for customer service and even become the key to customer satisfaction. The difference from chatbot is that intelligent customer service focuses more on providing customer information and solving customer problems. Companies have also launched various functions of intelligent customer service in hopes of improving customer satisfaction. This research takes the most common text-enabled intelligent customer service currently on the market as the research objective, uses the information system success model proposed by Delone and McLean in 2003 as the basis. Additionally, related researches are also taken into concern to integrate various quality factors that may affect user satisfaction of intelligent customer service. This study invites scholars in the field of information management and industry experts in the information technology and financial industries to conduct a three-round modified Delphi method on this structure. After three rounds of Delphi method, various dimensions and variables were revised and deleted, and finally divided the influencing factors of user satisfaction into four dimensions and 18 variables. From the research results, we can find that users are most concerned about the information content provided by intelligent customer service. The followings are the stability of the system and the degree of intelligence of the system. As long as these three items become the necessary elements of the intelligent customer service, it is likely to have higher user satisfaction and may increase the user's willingness to use it again. The last is the degree to which the system can interact with user in a human-like way. This may become a bonus condition, rather than an item that users mainly care about. The results of this study also provide a reference basis for companies to have system design when implementing intelligent customer service in the future. |
目次 Table of Contents |
論文審定書.............................................................................................................................................. i 摘要 ........................................................................................................................................................ ii Abstract .................................................................................................................................................. iii Chapter 1 Introduction ..................................................................................................................... 1 1.1. Research Background ......................................................................................................... 1 1.2. Motivation ............................................................................................................................ 3 1.3. Research Purpose ................................................................................................................ 4 Chapter 2 Literature Review ............................................................................................................ 6 2.1. Artificial Intelligence Robot ............................................................................................... 6 2.1.1. Intelligent Customer Service .......................................................................................... 7 2.1.2. Chatbot ........................................................................................................................... 11 2.2. Information System Satisfaction Measurement Factors ................................................ 13 2.2.1. System Quality ............................................................................................................... 14 2.2.2. Information Quality ...................................................................................................... 15 2.2.3. Service Quality .............................................................................................................. 18 Chapter 3 Research Method ........................................................................................................... 22 3.1. Research Design ................................................................................................................. 22 3.2. Modified Delphi Method ................................................................................................... 26 3.2.1. Selection Criteria of Experts and Scholars ................................................................. 27 3.2.2. Delphi Method Consistency Test ................................................................................. 30 Chapter 4 Results ............................................................................................................................ 32 4.1. Delphi Method Results and Analysis ............................................................................... 32 4.1.1. Brainstorming Phase ..................................................................................................... 33 4.1.2. The Narrowing Down Phase......................................................................................... 39 4.1.3. Ranking Phase ............................................................................................................... 43 Chapter 5 Conclusions .................................................................................................................... 48 5.1. Discussion ........................................................................................................................... 48 5.2. Implications for Research ................................................................................................. 51 5.3. Implications for Practice ................................................................................................... 52 5.4. Future Research and Limitation ...................................................................................... 52 Reference ............................................................................................................................................. 54 Appendix .............................................................................................................................................. 60 |
參考文獻 References |
Adler, M., & Ziglio, E. (1996). Gazing into the oracle: The Delphi method and its application to social policy and public health. Jessica Kingsley Publishers. Bahrammirzaee, A. (2010). A comparative survey of artificial intelligence applications in finance: Artificial neural networks, expert system and hybrid intelligent systems. Neural Computing and Applications, 19(8), 1165-1195. Barnes, B. R., Fox, M. T., & Morris, D. S. (2004). Exploring the linkage between internal marketing, relationship marketing and service quality: A case Sttudy of a consulting organization. Total Quality Management & Business Excellence, 15(5-6), 593-601. Barnes, S. J., & Vidgen, R. T. (2002). An integrative approach to the assessment of e-commerce quality. Journal of Electronic Commerce Research, 3(3), 114-127. Bennett, R., & Barkensjo, A. (2005). Relationship quality, relationship marketing, and client perceptions of the levels of service quality of charitable organisations. International Journal of Service Industry Management, 16(1), 81-106. Brady, M. K., & Cronin, J. J. (2001). Some new thoughts on conceptualizing perceived service quality: A hierarchical approach. Journal of Marketing, 65(3), 34-49. Brandtzaeg, P. B., & Følstad, A. (2017). Why People Use Chatbots. Paper presented at the Internet Science, Cham. Cheng, K.-T. (2012). The impact factors of information system satisfaction by two dimensions. (PhD). National Sun Yat-sen University, Kaohsiung. Couper, M. R. (1984). The Delphi technique: Characteristics and sequence model. Advances in Nursing Science, 7(1), 72-77. Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method to the use of experts. Management Science, 9(3), 458-467. Delone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information Systems Research, 3(1), 60-95. Delone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9-30. 55 Doll, W. J., Deng, X., Raghunathan, T. S., Torkzadeh, G., & Xia, W. (2004). The meaning and measurement of user satisfaction: A multigroup invariance analysis of the end-user computing satisfaction instrument. Journal of Management Information Systems, 21(1), 227-262. Fitzpatrick, K. K., Darcy, A., & Vierhile, M. (2017). Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): A randomized controlled trial. Journal of Medical Internet Research, 4(2), e19. Forsgren, N., Durcikova, A., Clay, P. F., & Wang, X. (2016). The integrated user satisfaction model: Assessing information quality and system quality as second-order constructs in system administration. Communications of the Association for Information Systems, 38, 803-839. Freeze, R. D., Alshare, K. A., Lane, P. L., & Wen, H. J. (2019). IS success model in e-learning context based on students' perceptions. Journal of Information Systems Education, 21(2), 173-184. Fullerton, G. (2005). The service quality–loyalty relationship in retail services: Does commitment matter? Journal of Retailing and Consumer Services, 12(2), 99-111. Ganguli, S., & Roy Sanjit, K. (2011). Generic technology‐based service quality dimensions in banking: Impact on customer satisfaction and loyalty. International Journal of Bank Marketing, 29(2), 168-189. Green, B., Jones, M., Hughes, D., & Williams, A. (1999). Applying the Delphi technique in a study of GPs’ information requirements. Health & Social Care in the Community, 7(3), 198-205. Hartman, A. (1981). Reaching consensus using the Delphi technique. Educational Leadership, 38(6), 495-497. Hasson, F., Keeney, S., & McKenna, H. (2000). Research guidelines for the Delphi survey technique. Journal of Advanced Nursing, 32(4), 1008-1015. Hippert, H. S., Pedreira, C. E., & Souza, R. C. (2001). Neural networks for short-term load forecasting: A review and evaluation. IEEE Transactions on Power Systems, 16(1), 44-55. Holmlund, M., & Kock, S. (1996). Relationship marketing: The importance of customer-perceived service quality in retail banking. The Service Industries Journal, 16(3), 287- 56 304. Jones, H., & Twiss, B. C. (1978). Forecasting Technology for Planning Decisions. Macmillan. Kettinger, W. J., & Lee, C. C. (2005). Zones of tolerance: Alternative scales for measuring information systems service quality. MIS Quarterly, 29(4), 607-623. Laumer, S., Maier, C., & Weitzel, T. (2017). Information quality, user satisfaction, and the manifestation of workarounds: A qualitative and quantitative study of enterprise content management system users. European Journal of Information Systems, 26(4), 333-360. Lee, S., Shin, B., & Lee, H. G. (2009). Understanding post-adoption usage of mobile data services: The role of supplier-side variables. Journal of the Association for Information Systems, 10(12), 860-888. Lin, T.-C. (2018). 資訊管理資訊管理: e 化企業的核心競爭力化企業的核心競爭力. 臺北市臺北市: 智勝文化公司智勝文化公司 Mauldin, M. L. (1994). Chatterbots, tinymuds, and the turing test: Entering the loebner prize competition. Paper presented at the Association for the Advancement of Artificial Intelligence (AAAI), Seattle, Washington. McDonnell, M., & Baxter, D. (2019). Chatbots and gender stereotyping. Interacting with Computers, 31(2), 116-121. McKenna, H. P. (1994). The Delphi technique: A worthwhile research approach for nursing? Journal of Advanced Nursing, 19(6), 1221-1225. McKinney, V., Yoon, K., & Zahedi, F. M. (2002). The measurement of web-customer satisfaction: An expectation and disconfirmation approach. Information Systems Research, 13(3), 296-315. Murry Jr, J. W., & Hammons, J. O. (1995). Delphi: A versatile methodology for conducting qualitative research. The Review of Higher Education, 18(4), 423-436. Najmaei, N., & Kermani, M. R. (2011). Applications of artificial intelligence in safe human–robot interactions. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 41(2), 448-459. Negash, S., Ryan, T., & Igbaria, M. (2003). Quality and effectiveness in web-based customer 57 support systems. Information & Management, 40(8), 757-768. Nelson, R. R., Todd, P. A., & Wixom, B. H. (2005). Antecedents of information and system quality: An empirical examination within the context of data warehousing. Journal of Management Information Systems, 21(4), 199-235. Nuruzzaman, M., & Hussain, O. K. (2018). A survey on chatbot implementation in customer service industry through deep neural networks. Paper presented at the 2018 IEEE 15th International Conference on e-Business Engineering (ICEBE). Okuda, T., & Shoda, S. (2018). AI-based chatbot service for financial industry. Fujitsu Scientific and Technical Journal, 54(2), 4-8. Panetta, K. (2017). Gartner Top Strategic Predictions for 2018 and Beyond. Retrieved from https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/ Paré, G., Cameron, A.-F., Poba-Nzaou, P., & Templier, M. (2013). A systematic assessment of rigor in information systems ranking-type Delphi studies. Information & Management, 50(5), 207-217. Parasuraman, A., Berry, L. L., & Zeithaml, V. A. (1991). Understanding customer expectations of service. Sloan Management Review, 32(3), 39-48. Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1985). A conceptual model of service quality and its implications for future research. Journal of Marketing, 49(4), 41-50. Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). Servqual: A multiple-item scale for measuring consumer perceptions of service quality. Journal of Retailing, 64(1), 12. Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1994). Alternative scales for measuring service quality: A comparative assessment based on psychometric and diagnostic criteria. Journal of Retailing, 70(3), 201-230. Rafaeli, A., Ziklik, L., & Doucet, L. (2008). The impact of call center employees' customer orientation behaviors on service quality. Journal of Service Research, 10(3), 239-255. Rai, A., Lang, S. S., & Welker, R. B. (2002). Assessing the validity of IS success models: An empirical test and theoretical analysis. Information Systems Research, 13(1), 50-69. Rouse, M. (2017). What is IM Bot? Retrieved from https://searchdomino.techtarget.com/definition/IM-bot 58 Schaupp, L. C., Bélanger, F., & Fan, W. (2009). Examining the success of websites beyond e-commerce: An extension of the IS success model. Journal of Computer Information Systems, 49(4), 42-52. Shawar, B. A., & Atwell, E. (2007). Chatbots: Are they really useful? Journal for Language Technology and Computational Linguistics, 22(1), 29-49. Tesch, D., Miller, R., Jiang, J. J., & Klein, G. (2005). Perception and expectation gaps of information systems provider skills: The impact on user satisfaction. Information Systems Journal, 15(4), 343-355. Tojib, D. R., Sugianto, L.-F., & Sendjaya, S. (2008). User satisfaction with business-to-employee portals: Conceptualization and scale development. European Journal of Information Systems, 17(6), 649-667. Wang, F., Zhang, J. J., Zheng, X., Wang, X., Yuan, Y., Dai, X., Zhang, J., & Yang, L. (2016). Where does AlphaGo go: From church-turing thesis to AlphaGo thesis and beyond. IEEE/CAA Journal of Automatica Sinica, 3(2), 113-120. Wang, Y.-S. (2008). Assessing e-commerce systems success: A respecification and validation of the DeLone and McLean model of IS success. Information Systems Journal, 18(5), 529-557. Wang, Y.-S., Wang, H.-Y., & Shee, D. Y. (2007). Measuring e-learning systems success in an organizational context: Scale development and validation. Computers in Human Behavior, 23(4), 1792-1808. Weizenbaum, J. (1966). ELIZA—A computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36-45. Yang, H.-P. (2017). Applying the Kano model to explore the critical quality attributes of smart customer service robot. (Master). National Taiwan University of Science and Technology, Taipei. Zang, Y., Zhang, F., Di, C. A., & Zhu, D. (2015). Advances of flexible pressure sensors toward artificial intelligence and health care applications. Materials Horizons, 2(2), 140-156. Zeithaml, V. A., Berry, L. L., & Parasuraman, A. (1996). The behavioral consequences of service quality. Journal of Marketing, 60(2), 31-46. 王宏仁 王宏仁. (2019). 【【2019企業企業AI大調查】臺灣大型企業多夯大調查】臺灣大型企業多夯AI??. Retrieved from 59 https://www.ithome.com.tw/article/130647 張嘉伶 張嘉伶. (2019). 秘密客消費者測試大調查秘密客消費者測試大調查 銀行銀行AI智慧客服聰明、貼心嗎?智慧客服聰明、貼心嗎?. 台灣銀台灣銀行家雜誌行家雜誌, 第第115期期. Retrieved from http://service.tabf.org.tw/TTB/Article/Detail?aID=291 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |