Responsive image
博碩士論文 etd-0727118-143310 詳細資訊
Title page for etd-0727118-143310
論文名稱
Title
基於矩陣分解的主題演進發現
Topic Evolution Discovery based on Regularized Matrix Factorization
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
43
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-20
繳交日期
Date of Submission
2018-08-27
關鍵字
Keywords
多層主題、主題分類、主題演進發現、非負矩陣分解、主題模型、階層式非負矩陣分解、階層式模型
Topic model, Hierarchical model, Non-negative matrix factorization, Hierarchical Non-negative matrix factorization, Topic classification, Topic evolution discovery, Multi-layer topic
統計
Statistics
本論文已被瀏覽 5907 次,被下載 1
The thesis/dissertation has been browsed 5907 times, has been downloaded 1 times.
中文摘要
在這項研究中,我們提出使用階層式非負矩陣分解來探討主題間的關係,在階層式的結構中,越低的層數主題會越具體,而越高的層數中的主題則越抽象。藉由從較具體的主題,一層一層至抽象主題的這個過程,可以漸進式的了解主題間的關係。此外我們的模型可以觀察主題的演變,主題是會隨著時間演進、合併以及消失的。
在我們的實驗中,我們使用非負矩陣分解,去分解各階層間,主題以及術語組成的矩陣,探討每年中各階層間的主題演變,我們藉由樹和網路將主題間的關係視覺化,藉由網路的方式,可以去呈現出主題以及術語間的關係,而主題樹可以表現出各個階層間的主題與主題之間的關係。
Abstract
In this thesis, we propose Hierarchical Non-negative Matrix Factorization(hNMF) to discover the hierarchical correlation among topics. The topics in lower layers are more concrete, whereas ones in higher layers are more abstract. Furthermore, our model could discover the evolution of topics, recognizing whether topics arise, merge or disappear. In our experiment, we applied nonnegative matrix factorization(NMF) on document-term matrix in each layer, detecting the evolution of topics in several years. We visualized the relationships by graphical model such as networks and trees. Topic networks present the communication between topics and terms, and topic trees reveal the hierarchical relationship among topics.
目次 Table of Contents
論文審定書 i
中文摘要 ii
英文摘要 iii
1. INTRODUCTION 1
2. BACKGROUND AND RELATED WORK 3
2.1 NON-NEGATIVE MATRIX FACTORIZATION (NMF) 3
2.2 HIERARCHICAL NON-NEGATIVE MATRIX FACTORIZATION(HNMF) 5
3. METHODOLOGY 5
3.1 HOW MANY KS? 6
3.2 HIERARCHICAL NON-NEGATIVE MATRIX FACTORIZATION 7
3.3 FIND THE EVOLUTION OF TOPIC 9
3.4 HNMF RELATIONSHIP BY NETWORK 11
4. EXPERIMENT 12
4.1 FIND TOPICS BY NMF WITH SAME K 12
4.2.1 TOPIC MODELING WITH HIERARCHICAL NON-NEGATIVE MATRIX FACTORIZATION 17
4.2.2 TOPIC TREE OF HIERARCHICAL NON-NEGATIVE MATRIX FACTORIZATION 27
4.3 DISPLAY TOPIC – HNMF RELATIONSHIP BY NETWORK 29
5. DISCUSSION 32
6. CONCLUSION 34
7. REFERENCE 34
參考文獻 References
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3(Jan), 993–1022.
Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55–71.
Choo, J., Lee, C., Reddy, C. K., & Park, H. (2013). Utopian: User-driven topic modeling based on interactive nonnegative matrix factorization. IEEE Transactions on Visualization and Computer Graphics, 19(12), 1992–2001.
Golub, G. H., & Reinsch, C. (1970). Singular value decomposition and least squares solutions. Numerische Mathematik, 14(5), 403–420.
Kuhn, H. W. (2005). The Hungarian method for the assignment problem. Naval Research Logistics (NRL), 52(1), 7–21.
Lake, J. A. (1994a). Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proceedings of the National Academy of Sciences, 91(4), 1455–1459.
Lake, J. A. (1994b). Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proceedings of the National Academy of Sciences, 91(4), 1455–1459.
Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755), 788–791.
Lee, D. D., & Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In Advances in neural information processing systems (pp. 556–562).
Mei, Q., Cai, D., Zhang, D., & Zhai, C. (2008). Topic modeling with network regularization. In Proceedings of the 17th international conference on World Wide Web (pp. 101–110). ACM.
Song, H. A., & Lee, S.-Y. (2013). Hierarchical Representation Using NMF. In M. Lee, A. Hirose, Z.-G. Hou, & R. M. Kil (Eds.), Neural Information Processing: 20th International Conference, ICONIP 2013, Daegu, Korea, November 3-7, 2013. Proceedings, Part I (pp. 466–473). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-42054-2_58
Steyvers, M., & Griffiths, T. (2007). Probabilistic topic models. Handbook of Latent Semantic Analysis, 427(7), 424–440.
Xu, W., Liu, X., & Gong, Y. (2003). Document clustering based on non-negative matrix factorization. In Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval (pp. 267–273). ACM.
Zhu, H., Zhou, M., & Alkins, R. (2012). Group role assignment via a Kuhn–Munkres algorithm-based solution. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 42(3), 739–750.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code