博碩士論文 etd-0825109-160011 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 邱允漢(Yun-han Qiu) 電子郵件信箱 E-mail 資料不公開
畢業系所 資訊管理學系研究所(Information Management)
畢業學位 碩士(Master) 畢業時期 97學年第2學期
論文名稱(中) 綜合法則歸納系統中變項交互作用之延伸研究
論文名稱(英) Attribute Interaction Effects in the Composite Rule Induction System: An Extended Study
檔案
  • etd-0825109-160011.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:校內一年後公開,校外永不公開

    論文語文/頁數 中文/66
    統計 本論文已被瀏覽 5394 次,被下載 2 次
    摘要(中) Liang (1992) 所提出的『綜合法則歸納系統』(Composite Rule Induction System),
    利用統計學的Tabular Approach 與Statistical Elaboration 方式,分別分析Qualitative 與
    Quantitative 兩種特徵值來產生較精確之分類法則。在楊佶憲 (2007) 的後續研究中進一
    步將綜合法則歸納系統改良為能夠產生與處理二階法則,當屬性之間存在交互作用時,
    該系統便能有效處理二階的交互效果。
    本研究利用事先篩選的機制,提出新的交互作用法則的產生方式以改善過去綜合法
    則歸納系統中處理交互作用的方法,利用變數之間獨立的程度判斷是否產生該交互作用
    法則,以改善因為二階法則使得系統複雜度過於龐大的問題。並針對混合資料中沒有處
    理的類別屬性資料與連續屬性資料間二階假說法則的部分進行處理,使系統中的二階假
    說法則能夠更完整。
    為了評估改良後演算法的績效,本研究也開發出改良後的雛型系統,並與先前的雛
    型系統進行比較,結果顯示本研究改良後的綜合法則歸納系統,其準確度與過去的系統
    相等但是知識模型的複雜度可以顯著降低。
    摘要(英) The Composite Rule Induction System proposed by Liang (1992) that uses the tabular
    approach and statistical inference to process qualitative and quantitative attributes separately
    for generating better classification rules. Yang (2007) extended the method by incorporating
    the second-order rules.
    This Study further extends the previous method by including a mechanism for detecting
    the existence of interaction effects. The detection method checks the degree of independence
    between attributes to determine whether the second-order rules should be processed. In order
    to evaluate the performance of the proposed method, an enhanced prototype system was
    developed and both real and simulated data were used to compare its accuracy and rule
    complexity with existing systems. The result shows that the enhanced system performs at
    least as accurate as the existing system but is significantly better in the complexity of the
    resulting knowledge base.
    關鍵字(中)
  • 資料探勘
  • 法則歸納
  • 二階法則
  • 交互作用
  • 關鍵字(英)
  • Rule Induction
  • Data Mining
  • Interaction Effects
  • Second-order rules
  • 論文目次 第一章、 緒論 ............................................................................................................................................ 1
    第一節. 研究背景與動機 ............................................................................................................... 1
    第二節. 研究目的 ........................................................................................................................... 3
    第三節. 研究步驟與方法 ............................................................................................................... 4
    第四節. 論文架構 ........................................................................................................................... 6
    第二章、 文獻探討 .................................................................................................................................... 7
    第一節. 資料探勘 ........................................................................................................................... 7
    第二節. 決策樹歸納學習法 ........................................................................................................... 9
    第三節. 綜合法則歸納系統 ......................................................................................................... 12
    第四節. 綜合法則歸納系統之交互作用處理 ............................................................................. 21
    第五節. 屬性之間的交互作用 ..................................................................................................... 24
    第三章、 演算法改良 ............................................................................................................................... 27
    第一節. 評估屬性之間的交互作用 ............................................................................................. 27
    第二節. 建立類別型資料與非類別型資料的交互作用法則 ..................................................... 32
    第四章、 績效評估 .................................................................................................................................. 34
    第一節. 實驗一:真實資料集測試 ............................................................................................. 34
    第二節. 實驗二:模擬資料集測試一 ......................................................................................... 43
    第三節. 實驗三:模擬資料集測試二 ......................................................................................... 47
    第五章、 結論 .......................................................................................................................................... 50
    第一節. 研究貢獻 ......................................................................................................................... 50
    第二節. 研究限制 ......................................................................................................................... 50
    第三節. 後續研究建議 ................................................................................................................. 51
    參考文獻 ……………………………………………………………………………………………..52
    中文部分.......................................................................................................................................... 52
    英文部分.......................................................................................................................................... 52
    附錄一:雛型系統操作說明 ..................................................................................................................... 56
    附錄二:SPSS 相關性資料產生巨集程式碼 ........................................................................................... 61
    參考文獻 中文部分
    1. 楊元琪(2007), 綜合法則歸納系統之延伸研究,國立中山大學資訊管理學系碩士論
    文。
    2. 楊佶憲(2008), 綜合法則歸納系統中變項交互作用之處理, 國立中山大學資訊管理
    學系碩士論文。
    英文部分
    1. Alex A. Freitas (2001), "Understanding the Crucial Role of Attribute Interaction in Data
    Mining," Artificial Intelligence Review, Vol.16, Page 177-199.
    2. Berry, M., and Linoff, G. (2000), "Mastering Data Mining: The Art & Science of
    Customer Relationship Management," John Wiley &Sons, New York.
    3. Breiman, L., Friedman J. H. and C. J. Stone (1984), "Classification and Regression
    Trees," Wadsworth & Brooks, Monterey, CA.
    4. Chandler, J. C. and T. P. Liang (1990), "Developing Expert Systems for Business
    Applicalians," Merrill Publishing Co., Columbus. OH..
    5. Callahan J. D. and Sorensen S. W. (1991) "Rule Induction for Group Decisions with
    Statistical Data -- An Example" The Journal of the Operational Research Society, Vol.
    42, No.3, Page 227-234.
    6. Feigenbaum, E.A. (1981), "Expert systems in the 1980s," State of the Art Report on
    Machine Intelligence,(A. Bond, Ed.)
    7. Fisher, R. A. (1936). "The Use of Multiple Measurements in Axonomic Problems,"
    Annals of Eugenics, Vol.7, 179-188.
    8. Hung, S.Y. and Liang, T.P. and Liu, Victor W.C. (1996), "Integrating Arbitrage Pricing
    Theory and Artificial Neural Networks to Support Portfolio Management," Decision
    Support Systems, Vol.18, Issue 3-4, Page 301-316.
    9. Jakulin A. and Bratko I. (2004), "Testing the Significance of Attribute Interactions,"
    Proceedings of the twenty-first international conference on Machine learning.
    10. Jakulin A. and Bratko I. (2004), "Analyzing Attribute Dependencies," Lecture Notes in
    Computer Science, Page 229-240.
    11. Jeng B. C., Liang T. P. and Hong M. Y. (1996), "Interactive Induction of Expert
    Knowledge," Expert Systems with Applications, Vol.10, Issue 3-4, Page 393-401.
    12. Jeng B. C., Jeng Y. M. and Liang T. P. (1997), "FILM: a fuzzy inductive learning
    method for automated knowledge acquisition," Decision Support Systems, Vol.21, Page
    61-73.
    13. Jiawei Han and Micheline Kamber (2006),"Data Mining - Concepts and Techniques,"
    Morgan Kaufmann.
    14. Joseph C. Giarratano and Gary D. Riley (2005), "Expert Systems Principles and
    Programming," Thomson.
    15. John Mingers, (1987) "Expert Systems-Rule Induction with Statistical Data," The
    Journal of the Operational Research Society, Vol.38, No.1, Page 39-47.
    16. John Mingers, (1987)"Rule Induction with Statistical Data-A Comparison with Multiple
    Regression," The Journal of the Operational Research Society, Vol.38, No.4,
    17. Kenneth Sorensen and Gerrit K. Janssens (2003), "Data mining with genetic algorithms
    on binary trees," European Journal of Operational Research, Vol.151, Page 253-264.
    18. Konda, R. and Rajurkar, K. P. (2005), "A Rule Induction Algorithm for Continuous
    Data Using Analysis of Variance," SoutheastCon, 2005. Proceedings. IEEE, Page
    489-494.
    19. Kononenko, I. (1991),”Semi-naive Bayesian classifiers,” Machine Learning-EWSL-91,
    pp. 206-219.
    20. Liang, T. P. (1992), "A Composite Approach to Inducing Knowledge for Expert
    Systems Design," Management Science, Vol.38, Issue 1.
    21. Liang, T. P., Chandler, J. S., Han I. and Roan J. (1992) " An empirical investigation of
    some data effects on the classification accuracy of probit, ID3, and Neural Networks,"
    Contemporary Accounting Research, Vol.9, No.1, Page 306-328.
    22. Liang, T. P., Chandler, J. S. and Han I. (1990) "Integrating Statistical and Inductive
    Learning Methods for Knowledge Acquisition," Expert Systems With Applications,
    Vol.1, Page 391-401.
    23. Matsatsinis and Nikolaos F. (2002), "CCAS: An Intelligent Decision Support System for
    Credit Card Assessment," Journal of Multi-Criteria Decision Analysis, Vol.11, Page
    213-235
    24. Merel van Diepen and Philip Hans Franses (2006) "Evaluating chi-squared automatic
    interaction detection," Information Systems, Vol.31 Page 814-831.
    25. Michael, H. Kutner, Christopher J. Nachtsheim, John Neter (2005) "Applied linear
    regression models," McGraw-Hill.
    26. Michie, D. (1983), "Inductive rule generation in the context of the Fifth Generation,"
    Proceedings of the Secound International Machine Learning Workshop
    27. Pazzani, M. J. (1996), “Searching for dependencies in Bayesian classifiers,” AI and
    Statistics V. Springer-Verlag.
    28. Quinlan, J. R. (1986), "Induction of Decision Trees", Machine Learning, Vol.1, Issue 1
    29. Quinlan, J. R. (1989). "Unknown Attributes Values in Induction," Machine Learning,
    Vol.4 Page 89-116.
    30. Quinlan, J. R. and Rivest, R. L. (1989), "Inferring Decision Trees Using the Minimum
    Description Length Principle," Information and Computation, Vol.80, Page 227-248.
    31. Quinlan, J. R. (1993), "C4.5: The Programs for Machines Learning," Morgan Kaufmann Publishers.
    32. Quinlan, J. R. and Cameron-Jones, R. M. (1995). "Oversearching and layered search in
    empirical learning," In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Vol.2 (Edited by Morgan Kaufman), 1019-1024.
    33. Quinlan, J. R. (1996), "Improved Use of Continuous Attributes in C4.5," Journal of
    Artificial Research, Vol.4, Page 77-90.
    34. Sam Chao and Yiping Li. (2006), "Uncovering Potential Attribute Relevance via MIA-Processing in Data Mining," Sixth IEEE International Conference on Data Mining – Workshops.
    35. Tan, P. N., Steinbach M. and Kumar V. (2005) , "Introduction to Data Mining," Addison Wesley.
    36. Wei-Yin Loh and Yu-Shan Shih (1997), "Split Selection Methods for Classification Trees," Statistica Sinica, Vol.7, Page 815-840.
    口試委員
  • 李偉柏 - 召集委員
  • 陳燈能 - 委員
  • 梁定澎 - 指導教授
  • 口試日期 2009-07-26 繳交日期 2009-08-25

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫