Responsive image
博碩士論文 etd-0712119-112522 詳細資訊
Title page for etd-0712119-112522
論文名稱
Title
布氏鯧鰺幼魚於不同鹽度馴養下滲透壓調節、能量代謝及細胞防禦反應之探討
Osmoregulatory, metabolic and cytoprotective responses in juvenile snubnose pompano (Trachinotus blochii) acclimated to different salinities
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2019-07-01
繳交日期
Date of Submission
2019-08-12
關鍵字
Keywords
布氏鯧鰺、滲透調節、鈉鉀幫浦、熱休克蛋白、肝醣磷解酶、能量代謝
Snubnose pompano, osmoregulation, Na+/K+-ATPase, heat shock protein, glycogen phosphorylase, energy metabolism
統計
Statistics
本論文已被瀏覽 5787 次,被下載 44
The thesis/dissertation has been browsed 5787 times, has been downloaded 44 times.
中文摘要
布氏鯧鰺 (Trachinotus blochii), 也稱黃臘鰺, 是海水廣鹽性經濟魚種,在台灣, 養殖戶通常馴養於不同鹽度之中。然而環境鹽度之變化往往造成魚類滲透壓緊迫, 影響生長速率。為了尋求黃臘鰺適合且理想之馴養環境鹽度來減輕其滲透壓緊迫以利其生長, 是水產養殖上重要的課題。因此, 本研究選擇四組鹽度 (5, 10, 20及35‰) 來探討黃臘鰺幼魚之滲透壓調節,細胞防禦及能量代謝上之反應。在各實驗鹽度環境中馴養7天後,黃臘鰺之血漿滲透壓與鈉離子,氯離子含量, 及肌肉含水量, 在所有實驗鹽度組都表現穩定, 並沒有顯著變化。在滲透調節機制中, 鰓上NKA活性在不同鹽度組呈現U型之趨勢, 在10和20‰組活性較低。另一方面,在細胞防禦反應中肝臟之熱休克蛋白70a在低張鹽度(5‰)組的表現顯著高於其他三組; 肝臟之熱休克蛋白70b則呈現U型趨勢,在低張鹽度(5‰)組及高張鹽度(35‰)組的表現顯著高於10與20‰組; 而鰓上之熱休克蛋白70表現量在不同鹽度組則無顯著差異。在能量代謝方面, 各鹽度組的血糖濃度及耗氧量並無顯著差異; 鰓之肝糖含量在低張鹽度(5‰)組顯著低於其他組,而肝臟之肝糖含量在各組間則無顯著差異; 此外, 鰓與肝臟之肝醣磷解酶蛋白質表現以及血漿乳酸含量皆呈現U型趨勢, 在10和20‰組較低。上述結果顯示,在半淡鹹水(20‰)及等張環境(10‰)中, 黃臘鰺體內的滲透壓緊迫與能量消耗都較少, 推測為較有利於黃臘鰺幼魚生長之環境鹽度。
Abstract
The marine euryhaline snubnose pompano (Trachinotus blochii) is an aquaculture species that is usually cultured in environments of various salinities in Taiwan. However, changes in environmental salinity would impose osmotic stress on fish. To seek a favorable salinity range for rearing snubnose pompano to mitigate salinity stress is essential for aquaculture practice. With this regard, four salinity groups (5, 10, 20 and 35‰) were used to examine the physiological responses in terms of osmoregulation, energy metabolism and cytoprotection of pompano. For 7-day exposure, pompano exhibited constant plasma osmolality, [Na+], [Cl-] and muscle water contents among all experimental salinity groups. In osmoregulation, the U-shape correlation was observed in branchial NKA (Na+/K+-ATPase) activities, with the lowest activities in the 10 and 20‰ groups. On the other hand, in cytoprotective response, protein expression of hepatic HSP70a (heat shock protein 70a) was significantly higher in the hypotonic salinity (5‰) than the isotonic and hypertonic groups. Meanwhile, higher protein expression of hepatic HSP70b was found in the hypotonic salinity (5‰) and hypertonic salinity (35‰) groups. Relative protein abundance of HSP70 in gills was not significantly different among various salinity groups. Furthermore, for glycogen metabolism, the plasma glucose level and oxygen consumption rate were similar in all salinity groups. Glycogen contents of gills were significantly lower in the hypotonic salinity (5‰). Glycogen contents of livers, however, were similar in all groups. The U-shape pattern of protein expression of GP (glycogen phosphorylase) in gills and livers as well as plasma lactate levels were observed among the four salinity groups, with the lower ones (the bottom of the U-shape) in the 10 and 20‰ groups. According to the above results, the pompano in the intermediate seawater (20‰) and isotonic salinity (10‰) is less energy consumption to cope with osmotic stress. Hence these two salinities would be suggested to be better environmental conditions for the growth performance of snubnose pompano.
目次 Table of Contents
論文審定書 i
謝辭 ii
Abstract vi
中文摘要 viii
1. Introduction 1
1.1. Euryhaline snubnose pompano (Trachinotus blochii) is an economic aquaculture species 1
1.2. Salinity effects on energy metabolism in teleosts 1
1.3. Branchial Na+/K+-ATPase (NKA) plays an important role in osmoregulation 2
1.4. Response of heat shock protein 70 (HSP70) for cytoprotection 3
1.5. Energy turnover between glycogen content and plasma glucose 4
1.6. The aims 4
2. Materials and methods 6
2.1. Experimental fish 6
2.2. Experimental design 6
2.3. Tissue sampling 7
2.4. Plasma analyses 8
2.5. Muscle water contents (MWC) 8
2.6. Preparation of liver total proteins, cytosolic and crude membrane fractions protein of gills 8
2.7. Antibodies 9
2.8. Immunoblotting 10
2.9. Gill Na+/K+-ATPase (NKA) activity 11
2.10. Glycogen contents 12
2.11. Oxygen consumption rate (MO2) 13
2.12. Statistics 14
3. Results 15
3.1. Osmoregulatory responses: plasma osmolality, [Na+], [Cl-], muscle water contents and specific NKA activities in gills 15
3.2. Cytoprotective responses: protein abundance of heat shock protein 70 (HSP70) in gills and livers 15
3.3. Energy metabolic responses: protein abundance of glycogen phosphorylase (GP) in gills and livers, glycogen contents in gills and livers, oxygen consumption rate (MO2), plasma glucose and lactate level 16
4. Discussion 18
4.1. Osmoregulatory responses 18
4.2. Cytoprotective responses 20
4.3. Energy metabolic responses 22
4.4. Application on aquaculture 25
5. Conclusion 27
6. References 28
7. Table 42
8. Figures 43
9. Appendix 57
參考文獻 References
劉文御、黃世鈴、張正芳、徐榮彬、陳敏隆、林式修 (2003)。卵圓鞭毛蟲病症。養殖水產生物病害防治 (特刊第二號)。66-70頁。

Anni, I. S. A., Bianchini, A., Barcarolli, I. F., Junior, A. S. V., Robaldo, R. B., Tesser, M. B., & Sampaio, L. A. (2016). Salinity influence on growth, osmoregulation and energy turnover in juvenile pompano Trachinotus marginatus Cuvier 1832. Aquaculture, 455, 63-72.

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D., (1994). Molecular Biology of the Cell, 3rd ed. Garland Science, New York.

Barbieri, E., & Doi, S. A. (2012). Acute toxicity of ammonia on juvenile cobia (Rachycentron canadum, Linnaeus, 1766) according to the salinity. Aquaculture International, 20(2), 373-382.

Bystriansky, J. S., Richards, J. G., Schulte, P. M., & Ballantyne, J. S. (2006). Reciprocal expression of gill Na+/K+-ATPaseα-subunit isoforms α1a and α1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance. Journal of Experimental Biology, 209(10), 1848-1858.

Boeuf, G., & Payan, P. (2001). How should salinity influence fish growth?. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 130(4), 411-423.

Bashamohideen, M., & Parvatheswararao, V. (1972). Adaptations to osmotic stress in the fresh-water euryhaline teleost Tilapia mossambica. IV. Changes in blood glucose, liver glycogen and muscle glycogen levels. Marine Biology, 16(1), 68-74.

Cunha, V. L. D., Barcarolli, I. F., Sampaio, L. A. N. D., & Bianchini, A. (2015). Effect of salinity on survival, growth and biochemical parameters in juvenile Lebranch mullet Mugil liza (Perciformes: Mugilidae).

Chavez, H. M., Fang, A. L. and Carandang, A. A. (2011). Effect of stocking density on growth performance, survival and production of silver pompano, Trachinotus blochii, (Lacépède, 1801) in marine floating cages. Asian Fish. Sci., 24: 321-330.

Costa, L. D. F., Miranda-Filho, K. C., Severo, M. P., & Sampaio, L. A. (2008). Tolerance of juvenile pompano Trachinotus marginatus to acute ammonia and nitrite exposure at different salinity levels. Aquaculture, 285(1-4), 270-272.

Chang, J. C. H., Wu, S. M., Tseng, Y. C., Lee, Y. C., Baba, O., & Hwang, P. P. (2007). Regulation of glycogen metabolism in gills and liver of the euryhaline tilapia (Oreochromis mossambicus) during acclimation to seawater. Journal of Experimental Biology, 210(19), 3494-3504.

Cara, J. B., Aluru, N., Moyano, F. J., & Vijayan, M. M. (2005). Food-deprivation induces HSP70 and HSP90 protein expression in larval gilthead sea bream and rainbow trout. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 142(4), 426-431.

Cheng, S. X. J., Aizman, O., Nairn, A. C., Greengard, P., & Aperia, A. (1999). [Ca2+] i determines the effects of protein kinases A and C on activity of rat renal Na+, K+‐ATPase. The Journal of Physiology, 518(1), 37-46.

Carroll, N. V., Longley, R. W., & Roe, J. H. (1956). The determination of glycogen in liver and muscle by use of anthrone reagent. J biol Chem, 220(2), 583-593.

Deane, E. E., & Woo, N. Y. (2005). Cloning and characterization of the hsp70 multigene family from silver sea bream: modulated gene expression between warm and cold temperature acclimation. Biochemical and biophysical research communications, 330(3), 776-783.

Deane, E. E., Kelly, S. P., Luk, J. C., & Woo, N. Y. (2002). Chronic salinity adaptation modulates hepatic heat shock protein and insulin-like growth factor I expression in black sea bream. Marine biotechnology, 4(2), 193-205.

Eissa, N., & Wang, H. P. (2016). Transcriptional stress responses to environmental and husbandry stressors in aquaculture species. Reviews in Aquaculture, 8(1), 61-88.

Evans, D. H., Piermarini, P. M., & Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological reviews, 85(1), 97-177.communications, 330(3), 776-783.

Ellis, S., Killender, M., & Anderson, R. L. (2000). Heat-induced alterations in the localization of HSP72 and HSP73 as measured by indirect immunohistochemistry and immunogold electron microscopy. Journal of Histochemistry & Cytochemistry, 48(3), 321-331.

Freire, C. A., Amado, E. M., Souza, L. R., Veiga, M. P., Vitule, J. R., Souza, M. M., & Prodocimo, V. (2008). Muscle water control in crustaceans and fishes as a function of habitat, osmoregulatory capacity, and degree of euryhalinity. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 149(4), 435-446.

Feder, M. E., & Hofmann, G. E. (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual review of physiology, 61(1), 243-282.

Gopakumar, G., Nazar, A. A., Jayakumar, R., Tamilmani, G., Kalidas, C., Sakthivel, M., ... & Ramkumar, B. (2012). Broodstock development through regulation of photoperiod and controlled breeding of silver pompano, Trachinotus blochii (Lacepede, 1801) in India. Indian Journal of Fisheries, 59(1), 53-57.

Gonzalez, R. J., Cooper, J., & Head, D. (2005). Physiological responses to hyper-saline waters in sailfin mollies (Poecilia latipinna). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 142(4), 397-403.

Hamed, S. S., Jiddawi, N. S., & Bwathondi, P. O. J. (2016). Effect of salinity levels on growth, feed utilization, body composition and digestive enzymes activities of juvenile Silver Pompano Trachinotus blochii. International Journal of Fisheries and Aquatic Studies, 4, 279-283.

Herrera, M., Vargas‐Chacoff, L., Hachero, I., Ruíz‐Jarabo, I., Rodiles, A., Navas, J. I., & Mancera, J. M. (2009). Osmoregulatory changes in wedge sole (Dicologoglossa cuneata Moreau, 1881) after acclimation to different environmental salinities. Aquaculture Research, 40(7), 762-771.

Hsieh, S. L., Chen, Y. N., & Kuo, C. M. (2003). Physiological responses, desaturase activity, and fatty acid composition in milkfish (Chanos chanos) under cold acclimation. Aquaculture, 220(1-4), 903-918.

Heijden, A. J. H. V. D., Verbost, P., Eygensteyn, J., Li, J., Bonga, S., & Flik, G. (1997). Mitochondria-rich cells in gills of tilapia (Oreochromis mossambicus) adapted to fresh water or sea water: quantification by confocal laser scanning microscopy. Journal of Experimental Biology, 200(1), 55-64.

Iwama, G. K. (1998). Stress in fish. Annals of the New York Academy of Sciences, 851(1), 304-310.

Iwama, G. K., Vijayan, M. M., Forsyth, R. B., & Ackerman, P. A. (1999). Heat shock proteins and physiological stress in fish. American Zoologist, 39(6), 901-909.

Jensen, M. K., Madsen, S. S., & Kristiansen, K. (1998). Osmoregulation and salinity effects on the expression and activity of Na+, K+‐ATPase in the gills of European sea bass, Dicentrarchus labrax (L.). Journal of Experimental Zoology, 282(3), 290-300.

Kumar, P., Thirunavukkarasu, A. R., Subburaj, R., & Thiagarajan, G. (2015). Concept of stress and its mitigation in aquaculture. In Advances in Marine and Brackishwater Aquaculture (pp. 95-100). Springer, New Delhi.

Kalidas, C., Sakthivel, M., Tamilmani, G., Ramesh Kumar, P., Nazar, A. A., Jayakumar, R., ... & Gopakumar, G. (2012). Survival and growth of juvenile silver pompano Trachinotus blochii (Lacepède, 1801) at different salinities in tropical conditions. Indian Journal of Fisheries, 59(3), 95-98.

Lee, S. W., Najiah, M., & Wendy, W. (2010). Bacteria associated with golden pompano (Trachinotus blochii) broodstock from commercial hatchery in Malaysia with emphasis on their antibiotic and heavy metal resistances. Frontiers of Agriculture in China, 4(2), 251-256.

Laiz-Carrión, R., Sangiao-Alvarellos, S., Guzmán, J. M., del Río, M. P. M., Soengas, J. L., & Mancera, J. M. (2005a). Growth performance of gilthead sea bream Sparus aurata in different osmotic conditions: implications for osmoregulation and energy metabolism. Aquaculture, 250(3-4), 849-861.

Laiz‐Carrión, R., Guerreiro, P. M., Fuentes, J., Canario, A. V., Martín Del Río, M. P., & Mancera, J. M. (2005b). Branchial osmoregulatory response to salinity in the gilthead sea bream, Sparus auratus. Journal of Experimental Zoology Part A: Comparative Experimental Biology, 303(7), 563-576.

Lin, C. H., Tsai, R. S., & Lee, T. H. (2004). Expression and distribution of Na, K-ATPase in gill and kidney of the spotted green pufferfish, Tetraodon nigroviridis, in response to salinity challenge. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 138(3), 287-295.

Lee, T. H., Feng, S. H., Lin, C. H., Hwang, Y. H., Huang, C. L., & Hwang, P. P. (2003). Ambient salinity modulates the expression of sodium pumps in branchial mitochondria-rich cells of Mozambique tilapia, Oreochromis mossambicus. Zoological science, 20(1), 29-36.

Lin, Y. M., Chen, C. N., & Lee, T. H. (2003). The expression of gill Na, K-ATPase in milkfish, Chanos chanos, acclimated to seawater, brackish water and fresh water. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 135(3), 489-497.

Ma, Z., Zheng, P., Guo, H., Jiang, S., Qin, J. G., Zhang, D., & Liu, X. (2016). Salinity regulates antioxidant enzyme and Na+ K+‐ATPase activities of juvenile golden pompano Trachinotus ovatus (Linnaeus 1758). Aquaculture research, 47(5), 1481-1487.

Morgan, J. D., & Iwama, G. K. (1998). Salinity effects on oxygen consumption, gill Na+, K+‐ATPase and ion regulation in juvenile coho salmon. Journal of Fish Biology, 53(5), 1110-1119.

Morgan, J. D., Sakamoto, T., Grau, E. G., & Iwama, G. K. (1997). Physiological and respiratory responses of the Mozambique tilapia (Oreochromis mossambicus) to salinity acclimation. Comparative Biochemistry and Physiology Part A: Physiology, 117(3), 391-398.

Marshall, W. S. (1995). 1 Transport Processes in Isolated Teleost Epithelia: Opercular Epithelium and Urinary Bladder. In Fish physiology (Vol. 14, pp. 1-23). Academic Press.

McCORMICK, S. D. (1995). 11 Hormonal Control of Gill Na+, K+-ATPase and Chloride Cell Function. In Fish physiology (Vol. 14, pp. 285-315). Academic Press.

McCormick, S. D., Moyes, C. D., & Ballantyne, J. S. (1989). Influence of salinity on the energetics of gill and kidney of Atlantic salmon (Salmo salar). Fish Physiology and Biochemistry, 6(4), 243-254.

Nakano, K., & Iwama, G. K. (2002). The 70-kDa heat shock protein response in two intertidal sculpins, Oligocottus maculosus and O. snyderi: relationship of hsp70 and thermal tolerance. Comparative biochemistry and physiology Part A: Molecular & integrative physiology, 133(1), 79-94.

Partridge, G. J., & Jenkins, G. I. (2002). The effect of salinity on growth and survival of juvenile black bream (Acanthopagrus butcheri). Aquaculture, 210(1-4), 219-230.

Perry, S. F. (1997). The chloride cell: structure and function in the gills of freshwater fishes. Annual Review of Physiology, 59(1), 325-347.

Ramesh Kumar, P., Nazar, A. A., Jayakumar, R., Tamilmani, G., Sakthivel, M., Kalidas, C., ... & Gopakumar, G. (2015). Amyloodinium ocellatum infestation in the broodstock of silver pompano Trachinotus blochii (Lacepede, 1801) and its therapeutic control. Indian Journal of Fisheries, 62(1), 131-134.

Resley, M. J., Webb Jr, K. A., & Holt, G. J. (2006). Growth and survival of juvenile cobia, Rachycentron canadum, at different salinities in a recirculating aquaculture system. Aquaculture, 253(1-4), 398-407.

Sardella, B. A., & Kültz, D. (2009). Osmo-and ionoregulatory responses of green sturgeon (Acipenser medirostris) to salinity acclimation. Journal of Comparative Physiology B, 179(3), 383-390.

Sardella, B. A., & Brauner, C. J. (2008). The effect of elevated salinity on ‘California’Mozambique tilapia (Oreochromis mossambicus x O. urolepis hornorum) metabolism. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 148(4), 430-436.

Saoud, I. P., Kreydiyyeh, S., Chalfoun, A., & Fakih, M. (2007). Influence of salinity on survival, growth, plasma osmolality and gill Na+–K+–ATPase activity in the rabbitfish Siganus rivulatus. Journal of Experimental Marine Biology and Ecology, 348(1-2), 183-190.

Sangiao-Alvarellos, S., Arjona, F. J., del Río, M. P. M., Míguez, J. M., Mancera, J. M., & Soengas, J. L. (2005). Time course of osmoregulatory and metabolic changes during osmotic acclimation in Sparus auratus. Journal of Experimental Biology, 208(22), 4291-4304.

Sampaio, L. A., & Bianchini, A. (2002). Salinity effects on osmoregulation and growth of the euryhaline flounder Paralichthys orbignyanus. Journal of Experimental Marine Biology and Ecology, 269(2), 187-196.

Soengas, J. L., Barciela, P., Fuentes, J., Otero, J., Andrés, M. D., & Aldegunde, M. (1993). The effect of seawater transfer in liver carbohydrate metabolism of domesticated rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 105(2), 337-343.

Tang, C. H., Leu, M. Y., Shao, K., Hwang, L. Y., & Chang, W. B. (2014). Short-term effects of thermal stress on the responses of branchial protein quality control and osmoregulation in a reef-associated fish, Chromis viridis. Zoological Studies, 53(1), 21.

Tang, C. H., Lai, D. Y., & Lee, T. H. (2012). Effects of salinity acclimation on Na+/K+–ATPase responses and FXYD11 expression in the gills and kidneys of the Japanese eel (Anguilla japonica). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 163(3-4), 302-310.

Tsui, W. C., Chen, J. C., & Cheng, S. Y. (2012). The effects of a sudden salinity change on cortisol, glucose, lactate, and osmolality levels in grouper Epinephelus malabaricus. Fish physiology and biochemistry, 38(5), 1323-1329.

Tang, C. H., Wu, W. Y., Tsai, S. C., Yoshinaga, T., & Lee, T. H. (2010). Elevated Na+/K+-ATPase responses and its potential role in triggering ion reabsorption in kidneys for homeostasis of marine euryhaline milkfish (Chanos chanos) when acclimated to hypotonic fresh water. Journal of Comparative Physiology B, 180(6), 813-824.

Tseng, Y. C., & Hwang, P. P. (2008). Some insights into energy metabolism for osmoregulation in fish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 148(4), 419-429.

Tseng, Y. C., Huang, C. J., Chang, J. C. H., Teng, W. Y., Baba, O., Fann, M. J., & Hwang, P. P. (2007). Glycogen phosphorylase in glycogen-rich cells is involved in the energy supply for ion regulation in fish gill epithelia. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.

Tsuzuki, M. Y., Sugai, J. K., Maciel, J. C., Francisco, C. J., & Cerqueira, V. R. (2007). Survival, growth and digestive enzyme activity of juveniles of the fat snook (Centropomus parallelus) reared at different salinities. Aquaculture, 271(1-4), 319-325.

TEMPLETON, M. (1961). Microdetermination of glycogen with anthrone reagent. Journal of Histochemistry & Cytochemistry, 9(6), 670-672.

Urbina, M. A., & Glover, C. N. (2015). Effect of salinity on osmoregulation, metabolism and nitrogen excretion in the amphidromous fish, inanga (Galaxias maculatus). Journal of experimental marine biology and ecology, 473, 7-15.

Vargas-Chacoff, L., Saavedra, E., Oyarzún, R., Martínez-Montaño, E., Pontigo, J. P., Yáñez, A., ... & Bertrán, C. (2015). Effects on the metabolism, growth, digestive capacity and osmoregulation of juvenile of Sub-Antarctic Notothenioid fish Eleginops maclovinus acclimated at different salinities. Fish physiology and biochemistry, 41(6), 1369-1381.

Vargas-Chacoff, L., Moneva, F., Oyarzún, R., Martínez, D., Muñoz, J. L. P., Bertrán, C., & Mancera, J. M. (2014). Environmental salinity-modified osmoregulatory response in the sub-Antarctic notothenioid fish Eleginops maclovinus. Polar biology, 37(9), 1235-1245.

Varsamos, S., Bonga, S. W., Charmantier, G., & Flik, G. (2004). Drinking and Na+/K+ ATPase activity during early development of European sea bass, Dicentrarchus labrax: ontogeny and short-term regulation following acute salinity changes. Journal of experimental marine biology and ecology, 311(2), 189-200.

Yang, W. K., Hseu, J. R., Tang, C. H., Chung, M. J., Wu, S. M., & Lee, T. H. (2009). Na+/K+-ATPase expression in gills of the euryhaline sailfin molly, Poecilia latipinna, is altered in response to salinity challenge. Journal of Experimental Marine Biology and Ecology, 375(1-2), 41-50.

Werner, I., Linares-Casenave, J., Van Eenennaam, J. P., & Doroshov, S. I. (2007). The effect of temperature stress on development and heat-shock protein expression in larval green sturgeon (Acipenser mirostris). Environmental Biology of Fishes, 79(3-4), 191-200.

Woo, N. Y. S., & Chung, K. C. (1995). Tolerance of Pomacanthus imperator to hypoosmotic salinities: changes in body composition and hepatic enzyme activities. Journal of Fish Biology, 47(1), 70-81.

Zhang, Y. T., Huang, S., Qiu, H. T., Li, Z., Mao, Y., Hong, W. S., & Chen, S. X. (2017). Optimal salinity for rearing Chinese black sleeper (Bostrychus sinensis) fry. Aquaculture, 476, 37-43.

Zadunaisky, J. A. (1997). Gill chloride cells activation by plasma osmolarity. In Ionic Regulation in Animals: A Tribute to Professor WTW Potts (pp. 87-105). Springer, Berlin, Heidelberg.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code