論文使用權限 Thesis access permission:自定論文開放時間(其他) user define other
開放時間 Available:
校內 Campus:開放下載的時間 available 2030-08-10
校外 Off-campus:開放下載的時間 available 2030-08-10
論文名稱 Title |
利用三維奈米網觸發的一維微米層結構技術設計可調超廣波段固態高分子光子晶體 Solid-State Polymer Photonic Crystals Featuring Tunable and Extremely-Wide Bandgaps by Three-Dimensional Nanonetworks-Triggered One-Dimensional Microlayers |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
77 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2020-07-27 |
繳交日期 Date of Submission |
2020-08-10 |
關鍵字 Keywords |
嵌段共聚物、光子晶體、自組裝、紅外 Photonic crystal, Block copolymer, Self-assembly, Infrared |
||
統計 Statistics |
本論文已被瀏覽 147 次,被下載 0 次 The thesis/dissertation has been browsed 147 times, has been downloaded 0 times. |
中文摘要 |
由高度可撓性、可大面積量產等優點的自組裝嵌段共聚物所製備的近紅外光 光子晶體在光傳輸、雷射共振腔、感測器、防偽標籤、節能等應用近年備受矚目。 然而,受到共聚物相分離結構尺寸及其有序性的侷限,卻難以利用單一分子量達成 橫跨可見光至短波紅外光波段能隙之條件。在此文中,我們介紹了一種新技術能夠 克服嵌段共聚物高分子的尺度局限性,而獲得有序的微結構,使薄膜成為能夠反射 某特定波段之固態光子晶體。利用此技術首次在高分子自組裝領域達到橫跨近紅 外光波段的固態光子晶體能隙。 |
Abstract |
Large-area and flexible photonic crystals by self-assembly of copolymers with tunable forbidden bandgaps in near infrared are expected to be very critical in advanced applications of optical communication, laser cavity, sensing field, anti-counterfeit label, energy conservation and so on. However, accomplishment of the requirement mentioned above is extremely tough for a single-molecular-weight copolymer due to the limitations of the lattice spacing and orientational control of the microphase-separated structure. Here, we established a unique technique by which periodic microscale structures are spontaneously constructed. Consequently, without the need of altering molecular weights, the photonic bandgaps could easily be extended to infrared regime in solid state. |
目次 Table of Contents |
論文審定書....................................................................................................................... i 致謝.................................................................................................................................. ii 摘要................................................................................................................................. iii Abstract .......................................................................................................................... iv Content ............................................................................................................................ v List of Figures ............................................................................................................... vii List of Tables................................................................................................................. xii Chapter 1. Introduction ................................................................................................. 1 1.1 Photonic Crystals............................................................................................. 1 1.2 Block Copolymer (BCP) Self-assembly......................................................... 3 1.3 Self-Assembly of Copolymer/ Liquid Crystal Composites.......................... 6 1.4 BCP Photonic Crystals ................................................................................... 9 1.5 Ultra-High-Mw Brush BCPs........................................................................ 16 1.5 Solvent-Induced Collective Osmotic Shock (COS) .................................... 19 Chapter 2. Objective .................................................................................................... 26 Chapter 3. Materials and Experimental Methods..................................................... 27 3.1 Materials ........................................................................................................ 27 3.2 Sample Preparation....................................................................................... 28 3.2.1 Thin Film Samples Preparation ...................................................... 28 3.2.2 Ternary Blends of PS-P2VP, PS, and Additive Organic Molecules ..................................................................................................................... 28 3.2.3 Nanonetworks-Triggered Microlayers (NNTML)......................... 28 3.2.4 TiO2 Infiltration ................................................................................ 29 3.3 Microstructural Characterization ............................................................... 29 3.3.1 Transmission Electron Microscopy (TEM).................................... 29 3.3.2 Field Emission Scanning Electron Microscopy (FESEM) ............ 30 3.3.3 Small Angle X-ray Scattering (SAXS) ............................................ 30 3.3.4 Reflectivity Measurements............................................................... 31 4.1 Nanonetworks-Triggered Microlayers (NNTML) ..................................... 32 4.2 Ultrabroad Photonic Bandgaps of NNTML-Containing Films................ 38 4.3 Optical Properties of PS(PSh)-P2VP(Chol)x Based Photonic Crystals..... 44 4.3 Theory of Osmotic-Stress-Controlled NNTML.......................................... 49 4.3 Extremely-Wide Range Reflection Bands Accessed by Alternating Additives............................................................................................................... 52 Chapter 5. Conclusion.................................................................................................. 60 Chapter 6. Reference.................................................................................................... 61 |
參考文獻 References |
[1] Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059−2062. [2] John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486−2489. [3] Starkey, T.; Vukusic, P. Light manipulation principles in biological photonic systems. Nanophoton. 2013, 2, 289−307. [4] Dumanli, A. G.; Savin, T. Recent advances in the biomimicry of structural colours. Chem. Soc. Rev. 2016, 45, 6698−6724. [5] Galusha, J. W.; Jorgensen, M. R.; Bartl, M. H. Diamond‐structured titania photonic‐ bandgap crystals from biological templates. Adv. Mater. 2010, 22, 107−110. [6] Zhao, Y.; Shang, L.; Cheng, Y.; Gu, Z. Spherical colloidal photonic crystals. Acc. Chem. Res. 2014, 47, 3632−3642. [7] Vlasov, Y. A.; O'boyle, M.; Hamann, H. F.; McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 2005, 438, 65−69. [8] Lee, Y. J.; Braun, P. V. Tunable inverse opal hydrogel pH sensors. Adv. Mater. 2003, 15, 563−566. [9] Krauss, T. F.; Richard, M.; Brand, S. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature 1996, 383, 699−702. [10] Knight, J.; Birks, T.; Russell, P. S. J.; Atkin, D. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 1996, 21, 1547−1549. [11] Busch, K.; John, S. Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum. Phys. Rev. Lett. 1999, 83, 967. [12] Finkelmann, H.; Kim, S. T.; Munoz, A.; Palffy‐Muhoray, P.; Taheri, B. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv. Mater. 2001, 13, 1069−1072. [13] Foulger, S. H.; Jiang, P.; Lattam, A.; Smith Jr, D. W.; Ballato, J.; Dausch, D. E.; Grego, S.; Stoner, B. R. Photonic crystal composites with reversible high‐frequency stop band shifts. Adv. Mater. 2003, 15, 685−689. [14] Ozaki, R.; Matsui, T.; Ozaki, M.; Yoshino, K. Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal. Appl. Phys. Lett. 2003, 82, 3593−3595. [15] Valkama, S.; Kosonen, H.; Ruokolainen, J.; Haatainen, T.; Torkkeli, M.; Serimaa, R.; ten Brinke, G.; Ikkala, O. Self-assembled polymeric solid films with temperatureinduced large and reversible photonic-bandgap switching. Nat. Mater. 2004, 3, 872−876. [16] Lawrence, J. R.; Shim, G. H.; Jiang, P.; Han, M. G.; Ying, Y.; Foulger, S. H. Dynamic tuning of photoluminescent dyes in crystalline colloidal arrays. Adv. Mater. 2005, 17, 2344−2349. [17] Arsenault, A. C.; Clark, T. J.; von Freymann, G.; Cademartiri, L.; Sapienza, R.; Bertolotti, J.; Vekris, E.; Wong, S.; Kitaev, V.; Manners, I. From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nat. Mater. 2006, 5, 179−184. [18] Takeoka, Y. Angle-independent structural coloured amorphous arrays. J. Mater. Chem. 2012, 22, 23299−23309. [19] Holland, B. T.; Blanford, C. F.; Stein, A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 1998, 281, 538−540. [20] Bates, F. S.; Fredrickson, G. H. Block copolymers-designer soft materials. Phys. Today 1999, 52, 32−38. [21] Park, C.; Yoon, J.; Thomas, E. L. Enabling nanotechnology with self assembled block copolymer patterns. Polymer 2003, 44, 6725−6760. [22] Muthukumar, M.; Ober, C.; Thomas, E. L. Competing interactions and levels of ordering in self-organizing polymeric materials. Science 1997, 277, 1225−1232. [23] Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Periodic areaminimizing surfaces in block copolymers. Nature 1988, 334, 598−601. [24] Matsen, M. W.; Bates, F. S. Origins of complex self-assembly in block copolymers. Macromolecules 1996, 29, 7641−7644. [25] Dumanli, A. G.; Savin, T. Recent advances in the biomimicry of structural colours. Chem. Soc. Rev. 2016, 45, 6698−6724. [26] Mitov, M. Cholesteric liquid crystals with a broad light reflection band. Adv. Mater. 2012, 24, 6260−6276. [27] Tamaoki, N. Cholesteric liquid crystals for color information technology. Adv. Mater. 2001, 13, 1135−1147. [28] Akiyama, H.; Tanaka, A.; Hiramatsu, H.; Nagasawa, J. i.; Tamaoki, N. Reflection colour changes in cholesteric liquid crystals after the addition and photochemical isomerization of mesogenic azobenzenes tethered to sugar alcohols. J. Mater. Chem. 2009, 19, 5956−5963. [29] Wang, Y.; Li, Q. Light‐driven chiral molecular switches or motors in liquid crystals. Adv. Mater. 2012, 24, 1926−1945. [30] Lu, H.; Hu, J.; Chu, Y.; Xu, W.; Qiu, L.; Wang, X.; Zhang, G.; Hu, J.; Yang, J. Cholesteric liquid crystals with an electrically controllable reflection bandwidth based on ionic polymer networks and chiral ions. J. Mater. Chem. C 2015, 3, 5406−5411. [31] Korhonen, J. T.; Verho, T.; Rannou, P.; Ikkala, O. Self-assembly and hierarchies in pyridine-containing homopolymers and block copolymers with hydrogen-bonded cholesteric side-chains. Macromolecules 2010, 43, 1507−1514. [32] Soininen, A. J.; Tanionou, I.; ten Brummelhuis, N.; Schlaad, H.; Hadjichristidis, N.; Ikkala, O.; Raula, J.; Mezzenga, R.; Ruokolainen, J. Hierarchical structures in lamellar hydrogen bonded LC side chain diblock copolymers. Macromolecules 2012, 45, 7091−7097. [33] Bai, P.; Kim, M. I.; Xu, T. Thermally controlled morphologies in a block copolymer supramolecule via nonreversible order–order transitions. Macromolecules 2013, 46, 5531−5537. [34] Guo, J.; Chen, F.; Qu, Z.; Yang, H.; Wei, J. Electrothermal switching characteristics from a hydrogen-bonded polymer network structure in cholesteric liquid crystals with a double-handed circularly polarized light reflection band. J. Phys. Chem. B 2011, 115, 861−868. [35] Guo, S.-M.; Liang, X.; Zhang, C.-H.; Chen, M.; Shen, C.; Zhang, L.-Y.; Yuan, X.; He, B.-F.; Yang, H. Preparation of a thermally light-transmittance-controllable film from a coexistent system of polymer-dispersed and polymer-stabilized liquid crystals. ACS Appl. Mater. Interfaces 2017, 9, 2942−2947. [36] Lu, H.; Hu, J.; Wu, S.; Chu, Y.; Xu, C.; Qiu, L.; Wang, X.; Zhang, G.; Hu, J. The effect of MWS polarisation on the morphology and electro-optical behaviour of normal-mode polymer-stabilised cholesteric textures. Liq. Cryst. 2016, 43, 540−546. [37] Wanke, M. C.; Lehmann, O.; Müller, K.; Wen, Q.; Stuke, M. Laser rapid prototyping of photonic band-gap microstructures. Science 1997, 275, 1284−1286. [38] Rumpf, R. C.; Pazos, J.; Garcia, C. R.; Ochoa, L.; Wicker, R. 3D printed lattices with spatially variant self-collimation. Prog Electromagn. 2013, 139, 1−14. [39] Campbell, M.; Sharp, D.; Harrison, M.; Denning, R.; Turberfield, A. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 2000, 404, 53−56. [40] Nucara, L.; Greco, F.; Mattoli, V. Electrically responsive photonic crystals: a review. J. Mater. Chem. C 2015, 3, 8449−8467. [41] Urbas, A.; Sharp, R.; Fink, Y.; Thomas, E. L.; Xenidou, M.; Fetters, L. J. Tunable block copolymer/homopolymer photonic crystals. Adv. Mater. 2000, 12, 812−814. [42] Deng, T.; Chen, C.; Honeker, C.; Thomas, E. L. Two-dimensional block copolymer photonic crystals. Polymer 2003, 44, 6549−6553. [43] Maldovan, M.; Urbas, A. M.; Yufa, N.; Carter, W. C.; Thomas, E. L. Photonic properties of bicontinuous cubic microphases. Phys. Rev. B 2002, 65, 165123. [44] Urbas, A. M.; Maldovan, M.; DeRege, P.; Thomas, E. L. Bicontinuous cubic block copolymer photonic crystals. Adv. Mater. 2002, 14, 1850−1853. [45] Wu, C.-S.; Tsai, P.-Y.; Wang, T.-Y.; Lin, E.-L.; Huang, Y.-C.; Chiang, Y.-W. Flexible or robust amorphous photonic crystals from network-forming block copolymers for sensing solvent vapors. Anal. Chem. 2018, 90, 4847−4855. [46] Lin, E.-L.; Hsu, W.-L.; Chiang, Y.-W. Trapping structural coloration by a bioinspired gyroid microstructure in solid state. ACS Nano 2018, 12, 485−493. [47] Sveinbjörnsson, B. R.; Weitekamp, R. A.; Miyake, G. M.; Xia, Y.; Atwater, H. A.; Grubbs, R. H. Rapid self-assembly of brush block copolymers to photonic crystals. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 14332−14336. [48] Miyake, G. M.; Piunova, V. A.; Weitekamp, R. A.; Grubbs, R. H. Precisely tunable photonic crystals from rapidly self‐assembling brush block copolymer blends. Angew. Chem., Int. Ed. 2012, 51, 11246−11248. [49] Zavala-Rivera, P.; Channon, K.; Nguyen, V.; Sivaniah, E.; Kabra, D.; Friend, R. H.; Nataraj, S.; Al-Muhtaseb, S. A.; Hexemer, A.; Calvo, M. E. Collective osmotic shock in ordered materials. Nat. Mater. 2012, 11, 53−57. [50] Smirnov, J. R. C.; Ito, M.; Calvo, M. E.; López‐López, C.; Jiménez‐Solano, A.; Galisteo‐López, J. F.; Zavala‐Rivera, P.; Tanaka, K.; Sivaniah, E.; Míguez, H. Adaptable ultraviolet reflecting polymeric multilayer coatings of high refractive index contrast. Adv. Opt. Mater. 2015, 3, 1633−1639. [51] Ito, M. M.; Gibbons, A. H.; Qin, D.; Yamamoto, D.; Jiang, H.; Yamaguchi, D.; Tanaka, K.; Sivaniah, E. Structural colour using organized microfibrillation in glassy polymer films. Nature 2019, 570, 363−367. [52] Huggins, M. L. Solutions of long chain compounds. J. Chem. Phys. 1941, 9, 440−440. [53] Flory, P. J. Thermodynamics of high polymer solutions. J. Chem. Phys. 1942, 10, 51−61. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間(其他) user define other 開放時間 Available: 校內 Campus:開放下載的時間 available 2030-08-10 校外 Off-campus:開放下載的時間 available 2030-08-10 您的 IP(校外) 位址是 216.73.216.180 現在時間是 2025-05-28 論文校外開放下載的時間是 2030-08-10 Your IP address is 216.73.216.180 The current date is 2025-05-28 This thesis will be available to you on 2030-08-10. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2025-08-10 |
QR Code |