博碩士論文 etd-0629117-161918 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 劉羿君(Yi-Chun Liu) 電子郵件信箱 E-mail 資料不公開
畢業系所 資訊管理學系研究所(Information Management)
畢業學位 碩士(Master) 畢業時期 105學年第2學期
論文名稱(中) 網路拍賣出價行為與價格哄抬之分群研究
論文名稱(英) Applying Clustering to Analyze Bidding Behaviors and Shill Bidding in Online Auction
檔案
  • etd-0629117-161918.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    紙本論文:1 年後公開 (2018-07-29 公開)

    電子論文:使用者自訂權限:校內 1 年後、校外 1 年後公開

    論文語文/頁數 中文/96
    統計 本論文已被瀏覽 5388 次,被下載 284 次
    摘要(中) 近年來網路拍賣參與人數與成交量不斷成長,然而網路匿名性無法確認出價者身分與歷史出價紀錄,也衍生出許多網路詐欺問題,像是惡意出價者以不當行為出價,試圖哄抬商品價格。
    本研究依據文獻探討整理出7個出價行為變數,(1)出價者參與同一位賣家拍賣之比率;(2)出價次數;(3)得標次數;(4)出價時間;(5)出價增額;(6)進入拍賣的時間;(7)離開拍賣的時間。隨著近年來網路的匿名性使得價格哄抬更難以被發現,相較過去研究大多使用具有明碼資訊的研究資料,未曾探討網路匿名性的問題,故本研究認為如何辨識隱碼出價者的身分變成首要的課題,才能進一步分析出價者的行為,本研究利用出價者的資訊,提出辨識隱碼出價者身分的方法,透過評價增加幅度、出價行為變數分區相同隱碼的出價者,並利用明碼出價者進行驗證,確認分群方式是顯著的。
    最後根據出價行為將所有出價者分為5群:(1)估價者;(2)嚇阻者;(3)投機者;(4)可疑者;(5)參與者,整理出五大出價集群的行為特性,並提出價格哄抬機率公式,作為偵測可以出價者的指標。期望能提供賣家或拍賣平台了解其出價行為,針對特定的集群給予相對應的管理機制,並能即時預防價格哄抬者,保護其他出價者的權益。
    摘要(英) In recent years, trading volume of online auction has been climbing steadily. However, the anonymous scheme hides confirm bidder’s identity and bidding history. This may lead to frauds, such as shill bidders participate in the process with the no intention to win but to raise competitive prices.
    We reviewed existing literature to find 7 bidder’s behavior variables that may be used to identify potential shill bidders: (1) frequency of a bidder participated in the same seller, (2) number of bids, (3) number of winning bids, (4) inter-bid time, (5) inter-bid increment, (6) timing of the first bid, (7) timing of the last bid. We used anonymous data to investigate whether shill bidders can be identified by their bidding behavior.
    In this research, we have developed a clustering-based approach that uses the increment of reputation and 7 behavior variables of the bidder to determine the probability of shill bidding. A dataset that includes both anonymous bidders and known bidders is used to evaluate the method. Five clusters have been identified from the anonymous data. The likelihood of shill bidding in each cluster was assessed. The data subset of winning bidders was used to evaluate the accuracy of the clustering model. The result indicates that our clustering-based approach can effectively assess the probability of a shill bidder from their bidding behavior. The contribution of this research allows shill bidders to be identified in the bidding process.
    關鍵字(中)
  • 資料探勘
  • 集群分析
  • 出價行為
  • 網路拍賣
  • 價格哄抬
  • 關鍵字(英)
  • data mining
  • cluster analysis
  • shill bidding
  • online auction
  • 論文目次 論文審定書 i
    致謝 ii
    摘要 iii
    Abstract iv
    圖目錄 vii
    表目錄 viii
    第一章 緒論 1
    第一節 研究背景 1
    第二節 研究動機與目的 3
    第三節 研究流程 5
    第二章 文獻探討 6
    第一節 拍賣定義與模式 6
    第二節 網路拍賣 9
    第三節 主成分分析 19
    第四節 機器學習 20
    第三章 研究方法 28
    第一節 導論 28
    第二節 分群演算法 28
    第三節 研究資料 31
    第四節 出價行為變數 32
    第五節 辨識隱碼出價者身分 42
    第四章 研究結果與分析 46
    第一節 辨識隱碼出價者身分 46
    第二節 價格哄抬機率公式 55
    第三節 出價者分群與驗證 61
    第四節 集群行為分析 64
    第五章 結論與建議 69
    第一節 研究結論 69
    第二節 研究限制與建議 71
    參考文獻 72
    中文文獻 72
    英文文獻 73
    附錄 77
    附錄一 研究資料 77
    參考文獻 中文文獻
    1. 周伴昇. (2013). 探勘網路拍賣競標者欺騙喊價行為特徵. 南台科技大學資訊管理系碩士論文. 
    2. 梁定澎. (2006). 決策支援系統與企業智慧: 智勝文化事業有限公司.
    3. 陳傑豪. (2015). 大數據玩行銷:改變世界的18個大數據新思維,第1本把大數據變營業額的行銷聖經: 30雜誌.
    4. 陳歷鋒. (2000). 網際網路拍賣機制之初探研究: 國立臺灣大學商學研究所碩士論文.
    5. 陳鍾誠. (2010). K-Means 分群演算法.  Retrieved from http://ccckmit.wikidot.com/ai:kmeans
    6. 楊文菁. (2004). 消費性網路競標策略之影響因素. 國立中山大學傳播管理研究所碩士論文. 
    7. 蔡秉修. (2014). 應用資料探勘於電子商務之消費行為研究-以音樂購物網為例. 
    8. 蘇中信, 劉俞志, & 劉蕙. (2013). 以顧客價值為基礎之資料庫行銷架構. 資訊管理學報, 20(3), 341-365.
    9. Juan, J. (2017). 用戶追蹤的演進及未來趨勢.  Retrieved from https://tw.alphacamp.co/2017/01/10/user-tracking-trend/
    10. Tan, W. (2011). 機器學習中的算法(1)-決策樹模型組合之隨機森林與GBDT.  Retrieved from http://www.cnblogs.com/LeftNotEasy/archive/2011/03/07/random-forest-and-gbdt.html
    英文文獻
    1. Bapna, R., Goes, P., & Gupta, A. (2000). A theoretical and empirical investigation of multi‐item on‐line auctions. Information Technology and Management, 1(1-2), 1-23.
    2. Bapna, R., Goes, P., Gupta, A., & Jin, Y. (2004). User heterogeneity and its impact on electronic auction market design: An empirical exploration. Mis Quarterly, 21-43.
    3. Beam, C., & Segev, A. (1997). Automated negotiations: A survey of the state of the art. Wirtschaftsinformatik, 39(3), 263-268.
    4. Bierman, H. S., & Fernandez, L. F. (1998). Game theory with economic applications: Addison Wesley.
    5. Carbonell, J. G., Michalski, R. S., & Mitchell, T. M. (1983). An overview of machine learning Machine learning (pp. 3-23): Springer.
    6. Chua, C. E. H., & Wareham, J. (2004). Fighting internet auction fraud: An assessment and proposal. Computer, 37(10), 31-37.
    7. Cramton, P. (1998). Ascending auctions. European Economic Review, 42(3), 745-756.
    8. Dholakia, U. M., Basuroy, S., & Soltysinski, K. (2002). Auction or agent (or both)? A study of moderators of the herding bias in digital auctions. International Journal of Research in Marketing, 19(2), 115-130.
    9. Dong, F., Shatz, S. M., & Xu, H. (2009). Combating online in-auction fraud: Clues, techniques and challenges. Computer Science Review, 3(4), 245-258.
    10. Dong, F., Shatz, S. M., Xu, H., & Majumdar, D. (2012). Price comparison: A reliable approach to identifying shill bidding in online auctions? Electronic Commerce Research and Applications, 11(2), 171-179.
    11. Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of continuous features. Paper presented at the Machine learning: proceedings of the twelfth international conference.
    12. Engelberg, J., & Williams, J. (2009). eBay’s proxy bidding: A license to shill. Journal of Economic Behavior & Organization, 72(1), 509-526.
    13. Fraley, C., & Raftery, A. E. (1998). How many clusters? Which clustering method? Answers via model-based cluster analysis. The computer journal, 41(8), 578-588.
    14. Goeree, J. K., Maasland, E., Onderstal, S., & Turner, J. L. (2005). How (not) to raise money. Journal of Political Economy, 113(4), 897-918.
    15. Huang Chua, C., & Wareham, J. (2002). Self-Regulation for Online Auctions: An Analysis. ICIS 2002 Proceedings, 11.
    16. Hung, C.-L., & Chou, J. C.-L. (2013). Bidding Behavior under Proxy Agent Bidding Information in Online English Auctions: An Experiment. Electronic Commerce Studies, 11(2), 229-248.
    17. Johnson, R. A., & Wichern, D. W. (2014). Applied multivariate statistical analysis (Vol. 4): Prentice-Hall New Jersey.
    18. Kauffman, R. J., & Wood, C. A. (2003). Running up the bid: detecting, predicting, and preventing reserve price shilling in online auctions. Paper presented at the Proceedings of the 5th international conference on Electronic commerce.
    19. Klein, S., & O’Keefe, M. (1999). The impact of the Web on auctions: Some empirical evidence and theoretical considerations. International Journal of Electronic Commerce, 3(3), 7-20.
    20. Kumar, M., & Feldman, S. I. (1998). Internet Auctions. Paper presented at the USENIX Workshop on Electronic Commerce.
    21. Lucking‐Reiley, D. (2000). Auctions on the Internet: What’s being auctioned, and how? The journal of industrial economics, 48(3), 227-252.
    22. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Paper presented at the Proceedings of the fifth Berkeley symposium on mathematical statistics and probability.
    23. Mamun, K., & Sadaoui, S. (2013). Combating shill bidding in online auctions. Paper presented at the Information Society (i-Society), 2013 International Conference on.
    24. McAfee, R. P., & McMillan, J. (1987). Auctions and bidding. Journal of economic literature, 25(2), 699-738.
    25. Pownall, R. A., & Wolk, L. (2013). Bidding behavior and experience in internet auctions. European Economic Review, 61, 14-27.
    26. Punj, G., & Stewart, D. W. (1983). Cluster analysis in marketing research: Review and suggestions for application. Journal of marketing research, 134-148.
    27. Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 6(2), 461-464.
    28. Shah, H. S., Joshi, N. R., & Wurman, P. R. (2002). Mining for bidding strategies on eBay. Paper presented at the SIGKDD’2002 Workshop on Web Mining for Usage Patterns and User Profiles.
    29. Trevathan, J., & Read, W. (2009). Detecting shill bidding in online English auctions. Handbook of research on social and organizational liabilities in information security, 46, 446-470.
    30. Turban, E., King, D., Lee, J., & Viehland, D. (2002). Electronic commerce: A managerial perspective 2002. Prentice Hall: ISBN 0, 13(975285), 4.
    31. Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed tenders. The Journal of finance, 16(1), 8-37.
    32. Wishart, D. (1969). 256. Note: An algorithm for hierarchical classifications. Biometrics, 165-170.
    33. Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and intelligent laboratory systems, 2(1-3), 37-52.
    34. Wurman, P. R., Wellman, M. P., & Walsh, W. E. (1998). The Michigan Internet AuctionBot: A configurable auction server for human and software agents. Paper presented at the Proceedings of the second international conference on Autonomous agents.
    口試委員
  • 邱兆民 - 召集委員
  • 何淑君 - 委員
  • 梁定澎 - 指導教授
  • 口試日期 2017-07-13 繳交日期 2017-07-29

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫