論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available
論文名稱 Title |
針對具有擾動分數階非線性系統之適應性順滑模態控制器設計 Design of Adaptive Sliding Mode Controllers for A Class of Perturbed Fractional-Order Nonlinear Systems |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
54 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2018-06-28 |
繳交日期 Date of Submission |
2018-07-03 |
關鍵字 Keywords |
擾動估測器、適應控制、非匹配擾動、順滑模態控制、分數階非線性系統 mismatched perturbation, sliding mode control, adaptive control, perturbation estimation, fractional order nonlinear systems |
||
統計 Statistics |
本論文已被瀏覽 5705 次,被下載 0 次 The thesis/dissertation has been browsed 5705 times, has been downloaded 0 times. |
中文摘要 |
本論文針對具有匹配及非匹配擾動之分數階非線性系統設計一個適應性順滑模態控制器以解決系統狀態校準問題。首先設計順滑平面,接著引入適應機制來設計控制器,使得狀態軌跡進入此順滑平面。由於適應機制及擾動估測的架構,使得擾動及擾動估測的上界資訊不需要事先預知。在此控制架構下確實能使狀態在有限時間內到達順滑平面並且停留在平衡點上。最後,本論文提供一個數值及一個實際範例來驗證其可行性。 |
Abstract |
In this thesis a design methodology of adaptive sliding mode controller was proposed for a class of multi-input fractional-order nonlinear systems with matched and mismatched perturbations to solve state regulation problems. The sliding surface is firstly introduced, and then the controller is designed with adaptive mechanisms and perturbation estimator embedded. Due to the employed adaptive and perturbation estimation mechanisms, the upper bounds of the perturbations and perturbation estimation errors do not need to be known in advance. The resultant control scheme is capable of driving the controlled states into the equilibrium point and stay thereafter within a finite time. Finally, a numerical example and a practical application are given for demonstrating the feasibility of the proposed control scheme. |
目次 Table of Contents |
論文審定書 ……………………………………………………………………… i 誌謝 …………………………………………………………………………........ ii 中文摘要 ………………………………………………………………………… iii Abstract …………………………………………………………………………. iv List of Figures …………………………………………………………............. vii Chapter 1 Introduction 1 1.1 Motivation …………………………………………………………………… 1 1.2 Brief Sketch of the Contents ……………………………………………… 2 Chapter 2 Design of Adaptive Sliding Mode Controllers 4 2.1 System Descriptions and Problem Formulations …………………….… 4 2.2 Preliminaries of Fractional Calculus …………………………………...... 5 2.3 Design of Sliding Surface ……………………………………………….. 10 2.4 Design of Fractional Derivative Estimator ……………………………... 12 2.5 Design of Controllers …………………………………………………….. 15 2.6 Stability Analysis ……………………………………………………......... 18 Chapter 3 Computer Simulation and Practical Application 22 3.1 Numerical Example ……………………………………………………… 22 3.2 Practical Application …………………………………………………….. 24 Chapter 4 Conclusions 35 Bibliography 36 Appendix 45 |
參考文獻 References |
[1] J. D. Gabano and T. Poinot, “Fractional modelling and identification of thermal systems,” Signal Processing, vol. 91, no. 3, pp. 531-541, 2011. [2] F. Sun and Q. Li, “Dynamic analysis and chaos of the 4D fractional-order power system,” Abstract and Applied Analysis, vol. 2014, 2014. [3] I. Schafer and K. Kruger, “Modelling of lossy coils using fractional derivatives,” Journal of Physics D: Applied Physics, vol. 41, no. 4, pp. 045001-1-045001-8, 2008. [4] S.Westerlund and L. Ekstam, “Capacitor theory,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 1, no. 5, pp. 826-839, 1994. [5] B. Xin and J. Zhang, “Finite-time stabilizing a fractional-order chaotic financial system with market confidence,” Nonlinear Dynamics, vol. 79, no. 2, pp. 1399- 1409, 2015. [6] I. S. Jesus, J. A. Tenreiro Machado, “Application of integer and fractional models in electrochemical systems,” Mathematical Problems in Engineering, vol. 2012, 2012. [7] I. Petras and R. L. Magin, “Simulation of drug uptake in a two compartmental fractional model for a biological system,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 12, pp. 4588-4595, 2011. [8] S. Kassim, H. Hamiche, S. Djennoune and M. Bettayeb, “A novel secure image transmission scheme based on synchronization of fractional-order discrete-time hyperchaotic systems,” Nonlinear Dynamics, vol. 88, no. 4, pp. 2473-2489, 2017. [9] H. B. Bao, J. D. Cao, “Projective synchronization of fractional-order memristorbased neural networks,” Neural Networks, vol. 63, pp. 1-9, 2015. [10] J. Sabatier, O. P. Agrawal and J. A. T. Machado, Advances in Fractional Calculus, Springer, 2007. [11] I. Podlubny, Fractional Differential Equations, Elsevier, 1998. [12] J. Shen and J. Lam, “Non-existence of finite-time stable equilibria in fractional-order nonlinear systems,” Automatica, vol. 50, no. 2, pp. 547-551, 2014. [13] N. Aguila-Camacho, M. A. Duarte-Mermoud, and J. A. Gallegos, “Lyapunov functions for fractional order systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 2, pp. 2951-2957, 2014. [14] N. Aguila-Camacho, M. A. Duarte-Mermoud, and J. A. Gallegos, “Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 23, no. 1-3, pp. 650-659, 2015. [15] H. Liu, S. Li, H. Wang, and G. Li, “Adaptive fuzzy synchronization for a class of fractional-order neural networks,” Chinese Physics B, vol. 26, no. 3, pp. 030504-1- 030504-10, 2017. [16] H. B. Bao and J. D. Cao, “Projective synchronization of fractional-ordermemristorbased neural networks,” Neural Networks, vol. 63, pp. 1-9, 2015. [17] H. Bao, J. H. Park, and J. Cao, “Adaptive synchronization of fractional-order memristor-based neural networks with time delay,” Nonlinear Dynamics, vol. 82, no. 3, pp. 1343-1354, 2015. [18] H. Liu, S. Li, J. Cao, G. Li, A. Alsaedi and F. E. Alsaadi, “Adaptive fuzzy prescribed performance controller design for a class of uncertain fractional-order nonlinear systems with external disturbances,” Neurocomputing, vol. 219, pp. 422-430, 2017. [19] L. Geng, Y. Yu, and S. Zhang, “Function projective synchronization between integer-order and stochastic fractional-order nonlinear systems,” ISA Transactions, vol. 64, pp. 34-46, 2016. [20] M. Rubagotti, A. Estrada, F. Castanos, A. Ferrara and L. Fridman, “Integral sliding mode control for nonlinear systems with matched and unmatched perturbations,” IEEE Transactions on Automatic Control, vol. 56, no. 11, pp. 2699-2704, 2011. [21] C. Edwards and S. Spurgeon, Sliding Mode Control: Theory and Applications, Taylor & Francis, 1998. [22] M. Defoort, T. Floquet, A. Kokosy and W. Perruquetti, “Sliding-mode formation control for cooperative autonomous mobile robots,” IEEE Transactions on Industrial Electronics, vol. 55, no. 11, pp. 3944-3953, 2008. [23] B. S. Park, S. J. Yoo, J. B. Park, and Y. H. Choi, “Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty,” IEEE Transactions on Control Systems Technology, vol. 17, no. 1, pp. 207-214, 2009. [24] R. J.Wai, L. C. Shih, “Design of voltage tracking control for DC-DC boost converter via total sliding-mode technique,” IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2502-2511, 2011. [25] M. Gokasan, S. Bogosyan, and D. J. Goering, “Sliding mode based powertrain control for efficiency improvement in series hybrid-electric vehicles,” IEEE Transactions on Power Electronics, vol. 21, no. 3, pp. 779-790, 2006. [26] S. Dadras and H. R. Momeni, “Control of a fractional-order economical system via sliding mode,” Physica A: Statistical Mechanics and Its Applications, vol. 389, no. 12, pp. 2434-2442, 2010. [27] Z.Wang, X. Huang and H. Shen, “Control of an uncertain fractional order economic system via adaptive sliding mode,” Neurocomputing, vol. 83, pp. 83-88, 2012. [28] A. Si-Ammour, S. Djennoune and M. Bettayeb, “A sliding mode control for linear fractional systems with input and state delays,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 5, pp. 2310-2318, 2009. [29] M. S. Tavazoei and M. Haeri, “Synchronization of chaotic fractional-order systems via active sliding mode controller,” Physica A: Statistical Mechanics and Its Applications, vol. 387, no. 1, pp. 57-70, 2008. [30] S. H. Hosseinnia, R. Ghaderi,M. Mahmoudian and S.Momani, “Sliding mode synchronization of an uncertain fractional order chaotic system,” Physica A: Statistical Mechanics and its Applications, vol. 59, no. 5, pp. 1637-1643, 2010. [31] M. P. Aghababa, “Robust stabilization and synchronization of a class of fractionalorder chaotic systems via a novel fractional sliding mode controller,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 6, pp. 2670-2681,2012. [32] C. Yin, S. Dadras, S. Zhong and Y. Q. Chen, “Control of a novel class of fractionalorder chaotic systems via adaptive sliding mode control approach,” Applied Mathematical Modelling, vol. 37, no. 4, pp. 2469-2483, 2013. [33] M. P. Aghababa, “Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems,” International Journal of Control, vol. 86, no. 10, pp. 1744-1756, 2013. [34] J. Ni, L. Liu, C. Liu and X. Hu, “Fractional order fixed-time nonsingular terminal sliding mode synchronization and control of fractional order chaotic systems,” Nonlinear Dynamics, vol. 89, no. 3, pp. 2065-2083, 2017. [35] D. Chen, Y. Liu, X.Ma and R. Zhang, “Control of a class of fractional-order chaotic systems via sliding mode,” Nonlinear Dynamics, vol. 67, no. 1, pp. 893-901, 2012. [36] M. P. Aghababa, “Design of hierarchical terminal sliding mode control scheme for fractional-order systems,” IET Science, Measurement and Technology, vol. 9, no. 1, pp. 122-133, 2014. [37] Y. Chen, Y. Wei, H. Zhong and Y. Wang, “Sliding mode control with a secondorder switching law for a class of nonlinear fractional order systems,” Nonlinear Dynamics, vol. 85, no. 1, pp. 633-643, 2016. [38] S. S. Majidabad, H. T. Shandiz and A. Hajizadeh, “Decentralized sliding mode control of fractional-order large-scale nonlinear systems,” Nonlinear Dynamics, vol. 77, no. 1-2, pp. 119-134, 2014. [39] A. Karami-Mollaee, H. Tirandaz and O. Barambones, “On dynamic sliding mode control of nonlinear fractional-order systems using sliding observer,” Nonlinear Dynamics, pp. 1-15, 2018. [40] A.Mujumdar, B. Tamhane and S. Kurode, “Observer-based sliding mode control for a class of noncommensurate fractional-order systems,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 5, pp. 2504-2512, 2015. [41] M. P. Aghababa, “A novel terminal sliding mode controller for a class of nonautonomous fractional-order systems,” Nonlinear Dynamics, vol. 73, no. 1-2, pp. 679-688, 2013. [42] H. Liu, Y. Pan, S. Li and Y. Chen, “Adaptive fuzzy backstepping control of fractional-order nonlinear systems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 8, pp. 2209-2217, 2017. [43] J. Wei, Y. Zhang and H. Bao, “An exploration on adaptive iterative learning control for a class of commensurate high-order uncertain nonlinear fractional order systems,” IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 2, pp. 618-627, 2018. [44] M. Bataghva and M. Hashemi, “Adaptive sliding mode synchronisation for fractional-order non-linear systems in the presence of time-varying actuator faults,” IET Control Theory and Applications, vol. 12, no. 3, pp. 377-383, 2018. [45] R. Zhang and S. Yang, “Robust synchronization of two different fractional-order chaotic systems with unknown parameters using adaptive sliding mode approach,” Nonlinear Dynamics, vol. 71, no. 1-2, pp. 269-278, 2013. [46] M. Maheri and N. M. Arifin, “Synchronization of two different fractional-order chaotic systems with unknown parameters using a robust adaptive nonlinear controller,” Nonlinear Dynamics, vol. 85, no. 2, pp. 825-838, 2016. [47] S. Shao, M. Chen and X. Yan, “Adaptive sliding mode synchronization for a class of fractional-order chaotic systems with disturbance,” Nonlinear Dynamics, vol. 83, no. 4, pp. 1855-1866, 2016. [48] S. L. Shi, J. X. Li and Y.M. Fang, “Extended-State-Observer-Based Chattering Free SlidingMode Control for Nonlinear SystemsWith Mismatched Disturbance,” IEEE Access, vol. 6, pp. 22952-22957, 2018. [49] J. Wang, S. Li, J. Yang, B. Wu and Q. Li, “Extended state observer-based sliding mode control for PWM-based DC-DC buck power converter systems with mismatched disturbances,” IET Control Theory and Applications, vol. 9, no. 4, pp. 579-586, 2015. [50] Y. Chang and C. C. Cheng, “Design of adaptive sliding surfaces for systems with mismatched perturbations to achieve asymptotical stability,” IET Control Theory and Applications, vol. 1, no. 1, pp. 417-421, 2007. [51] C. C. Cheng and Y. Chang, “Design of decentralised adaptive sliding mode controllers for large-scale systems with mismatched perturbations,” International Journal of Control, vol. 81, no. 10, pp. 1507-1518, 2008. [52] C. C. Cheng, C. C. Wen and W. T. Lee, “Design of decentralised sliding surfaces for a class of large-scale systems with mismatched perturbations,” International Journal of Control, vol. 82, no. 11, pp. 2013-2025, 2009. [53] Y. Li, Y. Q. Chen and I. Podlubny, “Mittag-Leffler stability of fractional order nonlinear dynamic systems,” Automatica, vol. 45, no. 8, pp. 1965-1969, 2009. [54] Y. Zhao, Y.Wang and Z .Liu, “Finite time stability analysis for nonlinear fractional order differential systems,” 32nd. Chinese Control Conference (CCC), China, 2013, pp. 487-492. [55] N. Aguila-Camacho, M. A. Duarte-Mermoud and J. A. Gallegos, “Lyapunov functions for fractional order systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 9, pp. 2951-2957, 2014. [56] V. E. Tarasov, “On chain rule for fractional derivatives,” Communications in Nonlinear Science and Numerical Simulation, vol. 30, no. 1-3, pp. 1-4, 2016. [57] D. Qian, C. Li, R. P. Agarwal and P. J. Y.Wong, “Stability analysis of fractional differential system with Riemann-Liouville derivative,” Mathematical and Computer Modelling, vol. 52, no. 5-6, pp. 862-874, 2010. [58] C. C. Cheng, M. W. Chang, “Design of derivative estimator using adaptive sliding mode technique,” American Control Conference, Minneapolis, 2006, pp. 14-16. [59] G. Tao, Adaptive Control Design and Analysis, John Wiley & Sons, 2003. [60] Y. Chang, C. C. Cheng, “Adaptive sliding mode control for plants with mismatched perturbations to achieve asymptotical stability,” International Journal of Robust and Nonlinear Control, vol. 17, no. 9, pp. 880-896, 2007. [61] Z. Zhang, S. Xu and Y. Chu, “Adaptive stabilisation for a class of non-linear state time-varying delay systems with unknown time-delay bound,” IET Control Theory and Applications, vol. 4, no. 10, pp. 1905-1913, 2010. [62] Y. S. Lin and C. C. Cheng, “Design of terminal block backstepping controllers for perturbed systems in semi-strict feedback form,” International Journal of Control, vol. 88, no. 10, pp. 2107-2116, 2015. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:永不公開 not available 校外 Off-campus:永不公開 not available 您的 IP(校外) 位址是 3.149.27.125 論文開放下載的時間是 校外不公開 Your IP address is 3.149.27.125 This thesis will be available to you on Indicate off-campus access is not available. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 永不公開 not available |
QR Code |