博碩士論文 etd-0030119-184158 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 邱明相(Ming-Siang Chiu) 電子郵件信箱 E-mail 資料不公開
畢業系所 資訊管理學系研究所(Department of Information Management)
畢業學位 碩士(Master) 畢業時期 107學年第1學期
論文名稱(中) 基於深度多標籤學習的食譜食材識別
論文名稱(英) RECIPE-INGREDIENT RECOGNITION BASED ON DEEP MULTI-LABEL LEARNING ​
檔案
  • etd-0030119-184158.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    紙本論文:5 年後公開 (2024-01-30 公開)

    電子論文:使用者自訂權限:校內 5 年後、校外 5 年後公開

    論文語文/頁數 中文/34
    統計 本論文已被瀏覽 5572 次,被下載 0 次
    摘要(中) 近年來深度學習技術蓬勃發展,其中圖像辨識的領域已有著卓越的表現及普遍的應用,舉凡目前的臉書,Google,無人商店等等,這些科技早已緊密與我們的生活結合,我們可以發現社群網路常常被分享的都是吃喝玩樂的訊息,尤其是美食圖片的分享,往往讓人心情愉悅忍不住食指大動,但往往我們都忽視這些美食背後隱藏的致命吸引力,由於近年來食安風暴頻傳,所以我們對吃的內容更應注意,我們要多吃食物而不是食品,避免加工過以及高油高鹽的食物,現代人有太多疾病都是攝取過量的不健康的食品所導致。
    緣此,本研究設計主要以圖像組成的食材辨識系統,使用深度多標籤學習與深度編碼器的非負矩陣分解(DANMF)法實作食譜食材辨識的技術。本研究引用MIT(麻省理工學院)提供之 Recipe1M 資料集,利用這些圖像資料訓練模型,透過模型可分辨食材料理風格解決大量多標籤的問題,並運用模型局部可解釋器(LIME),來說明圖片中成分預測部位,增加模型的可解釋性。
    摘要(英) In recent years, deep learning technology has flourished, and the field of image recognition has been excellent in performance and universal application. Today's Facebook, Google, unmanned stores, etc. have been closely integrated with our lives. We can find posts of eating and drinking are often shared on social media, especially the sharing of food pictures, which often makes people feel happy and finger licking, but often we ignore the deadly attraction hidden behind these foods. For the past few years, there are frequent incidents of food safety, so we should pay more attention to the composition of food. We should eat more whole foods instead of processed foods, avoid processed and high-oil and high-salt foods. Modern people have too many diseases caused by excessive intake of unhealthy foods.
    In this study, the Recipe-Ingredient recognition system consisting mainly of images was used, and the method of deep multi-label learning and deep autoencoder-like non-negative matrix factorization (DANMF) was used to implement the Recipe-Ingredient recognition method. This study uses the Recipe1M dataset provided by Massachusetts Institute of Technology to train models using these image data, and solve a large number of multi-label problems through the model-resolved food material style. Furthermore, Local Interpretable Model-Agnostic Explanations (LIME) was employed to explain the prediction parts of the components in the picture and increase the interpretability of the model.
    關鍵字(中)
  • 深度學習
  • 多標籤學習
  • 模型局部可解釋器
  • 非負矩陣分解
  • 卷積神經網路
  • 類似非負矩陣分解的深度自動編碼
  • 關鍵字(英)
  • Deep Autoencoder-like Non-negative Matrix Factorization
  • Local Interpretable Model-Agnostic Explanations
  • Deep Learning
  • Non-negative Matrix Factorization
  • Multi-Label Learning
  • Convolutional Neural Network
  • 論文目次 誌謝 ii
    摘要 iii
    Abstract iv
    第一章 緒論 1
    (1-1)研究背景 1
    (1-2)研究動機 3
    (1-3)研究目的 4
    第二章 文獻探討 5
    (2-1)深度學習 (Deep Learning) 5
    (2-2)卷積神經網路(Convolutional Neural Network) 6
    (2-3)多標籤學習(Multi-Label Learning) 8
    (2-4)非負矩陣分解 (Non-negative Matrix Factorization) 10
    (2-5)Deep Autoencoder-like Non-negative Matrix Factorization (DANMF) 11
    (2-6)Local Interpretable Model-Agnostic Explanations (LIME) 12
    第三章 研究方法 13
    (3-1)原始資料引用 15
    (3-2)資料前處理 15
    (3-3)分析與建立食材資料集 16
    (3-4)運用多標籤學習方法建構深度學習卷積神經網路 19
    (3-5)運用圖片辨識模型程序預測料理風格 20
    (3-6)料理風格解釋 21
    第四章 實驗結果 22
    第五章 結論 25
    第六章 參考文獻 26
    參考文獻 Agarwal, R., & Miller, K. (n.d.). Information Extraction from Recipes, 14.
    Ahn, Y.-Y., Ahnert, S. E., Bagrow, J. P., & Barabási, A.-L. (2011). Flavor network and the principles of food pairing. Scientific Reports, 1(1). https://doi.org/10.1038/srep00196
    Bi, W., & Kwok, J. T. (n.d.). Efficient Multi-label Classification with Many Labels, 9.
    Bolaños, M., Ferrà, A., & Radeva, P. (2017). Food Ingredients Recognition through Multi-label Learning. ArXiv:1707.08816 [Cs]. Retrieved from http://arxiv.org/abs/1707.08816
    Boutell, M. R., Luo, J., Shen, X., & Brown, C. M. (2004). Learning multi-label scene classification. Pattern Recognition, 37(9), 1757–1771. https://doi.org/10.1016/j.patcog.2004.03.009
    Chen, J., & Ngo, C. (2016a). Deep-based Ingredient Recognition for Cooking Recipe Retrieval. In Proceedings of the 2016 ACM on Multimedia Conference - MM ’16 (pp. 32–41). Amsterdam, The Netherlands: ACM Press. https://doi.org/10.1145/2964284.2964315
    Chen, J., & Ngo, C. (2016b). Deep-based Ingredient Recognition for Cooking Recipe Retrieval. In Proceedings of the 2016 ACM on Multimedia Conference - MM ’16 (pp. 32–41). Amsterdam, The Netherlands: ACM Press. https://doi.org/10.1145/2964284.2964315
    CS231n Convolutional Neural Networks for Visual Recognition. (2018, October 2). Retrieved October 2, 2018, from http://cs231n.github.io/convolutional-networks/
    Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li, & Li Fei-Fei. (2009). ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (pp. 248–255). Miami, FL: IEEE. https://doi.org/10.1109/CVPR.2009.5206848
    Gibaja, E., & Ventura, S. (2015). A Tutorial on Multilabel Learning. ACM Computing Surveys, 47(3), 1–38. https://doi.org/10.1145/2716262
    He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. ArXiv:1512.03385 [Cs]. Retrieved from http://arxiv.org/abs/1512.03385
    Hinton, G. E. (2006). Reducing the Dimensionality of Data with Neural Networks. Science, 313(5786), 504–507. https://doi.org/10.1126/science.1127647
    How do Convolutional Neural Networks work? (2018, October 2). Retrieved October 2, 2018, from https://brohrer.github.io/how_convolutional_neural_networks_work.html
    Hoyer, P. O., & Hoyer, P. (n.d.). Non-negative Matrix Factorization with Sparseness Constraints, 13.
    Koitka, S., & Friedrich, C. M. (2016). nmfgpu4R: GPU-Accelerated Computation of the Non-Negative Matrix Factorization (NMF) Using CUDA Capable Hardware, 8, 11.
    Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 25 (pp. 1097–1105). Curran Associates, Inc. Retrieved from http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
    Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755), 788–791. https://doi.org/10.1038/44565
    Liu, C., Cao, Y., Luo, Y., Chen, G., Vokkarane, V., & Ma, Y. (2016). DeepFood: Deep Learning-Based Food Image Recognition for Computer-Aided Dietary Assessment. In C. K. Chang, L. Chiari, Y. Cao, H. Jin, M. Mokhtari, & H. Aloulou (Eds.), Inclusive Smart Cities and Digital Health (Vol. 9677, pp. 37–48). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-39601-9_4
    Madjarov, G., Kocev, D., Gjorgjevikj, D., & Džeroski, S. (2012). An extensive experimental comparison of methods for multi-label learning. Pattern Recognition, 45(9), 3084–3104. https://doi.org/10.1016/j.patcog.2012.03.004
    Marin, J., Biswas, A., Ofli, F., Hynes, N., Salvador, A., Aytar, Y., … Torralba, A. (2018). Recipe1M: A Dataset for Learning Cross-Modal Embeddings for Cooking Recipes and Food Images. ArXiv:1810.06553 [Cs]. Retrieved from http://arxiv.org/abs/1810.06553
    Morency, L.-P., & Baltrusaitis, T. (n.d.-a). Tutorial on Multimodal Machine Learning, 158.
    Morency, L.-P., & Baltrusaitis, T. (n.d.-b). Tutorial on Multimodal Machine Learning, 158.
    Myers, A., Johnston, N., Rathod, V., Korattikara, A., Gorban, A., Silberman, N., … Murphy, K. (2015). Im2Calories: Towards an Automated Mobile Vision Food Diary. In 2015 IEEE International Conference on Computer Vision (ICCV) (pp. 1233–1241). Santiago, Chile: IEEE. https://doi.org/10.1109/ICCV.2015.146
    Pascual-Montano, A., Carazo, J. M., Kochi, K., Lehmann, D., & Pascual-Marqui, R. D. (2006). Nonsmooth nonnegative matrix factorization (nsNMF). IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(3), 403–415. https://doi.org/10.1109/TPAMI.2006.60
    Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. ArXiv:1602.04938 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1602.04938
    Ruder, S. (2017). An Overview of Multi-Task Learning in Deep Neural Networks. ArXiv:1706.05098 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1706.05098
    Salvador, A., Hynes, N., Aytar, Y., Marin, J., Ofli, F., Weber, I., & Torralba, A. (2017). Learning Cross-Modal Embeddings for Cooking Recipes and Food Images. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3068–3076). Honolulu, HI: IEEE. https://doi.org/10.1109/CVPR.2017.327
    Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. ArXiv:1409.1556 [Cs]. Retrieved from http://arxiv.org/abs/1409.1556
    Srivastava, T. (n.d.). Framework to build a niche dictionary for text mining, 12.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., … Rabinovich, A. (2014). Going Deeper with Convolutions. ArXiv:1409.4842 [Cs]. Retrieved from http://arxiv.org/abs/1409.4842
    Teng, C.-Y., Lin, Y.-R., & Adamic, L. A. (2011). Recipe recommendation using ingredient networks. ArXiv:1111.3919 [Physics]. Retrieved from http://arxiv.org/abs/1111.3919
    Thoma, M. (2017). Analysis and Optimization of Convolutional Neural Network Architectures. ArXiv:1707.09725 [Cs]. Retrieved from http://arxiv.org/abs/1707.09725
    Ye, F., Chen, C., & Zheng, Z. (2018). Deep Autoencoder-like Nonnegative Matrix Factorization for Community Detection. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management - CIKM ’18 (pp. 1393–1402). Torino, Italy: ACM Press. https://doi.org/10.1145/3269206.3271697
    Yeh, C.-K., Wu, W.-C., Ko, W.-J., & Wang, Y.-C. F. (n.d.). Learning Deep Latent Spaces for Multi-Label Classification, 7.
    Yu, Q., Mao, D., & Wang, J. (n.d.). Deep Learning Based Food Recognition, 6.
    Zhang, M.-L., & Zhou, Z.-H. (2014). A Review on Multi-Label Learning Algorithms. IEEE Transactions on Knowledge and Data Engineering, 26(8), 1819–1837. https://doi.org/10.1109/TKDE.2013.39
    Zhou, Z.-H. (n.d.). Multi-Instance Multi-Label Learning with Application to Scene Classification, 8.
    口試委員
  • 林耕霈 - 召集委員
  • 李珮如 - 委員
  • 康藝晃 - 指導教授
  • 口試日期 2019-01-25 繳交日期 2019-01-30

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫