Responsive image
博碩士論文 etd-0015119-143634 詳細資訊
Title page for etd-0015119-143634
論文名稱
Title
低溫馴化對金錢魚低溫耐受性及熱休克蛋白質之表現
The Capability of Low Temperature Tolerance and Heat Shock Protein 70 Expression of the Spotted Scat after Acclimation to Different Temperature
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
58
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-10-17
繳交日期
Date of Submission
2019-01-15
關鍵字
Keywords
金錢魚、低溫耐受性、熱休克蛋白
thermal stress, heat shock protein70, Scatophagus argus, low temperature tolerance
統計
Statistics
本論文已被瀏覽 5765 次,被下載 21
The thesis/dissertation has been browsed 5765 times, has been downloaded 21 times.
中文摘要
金錢魚 (Scatophagus argus)常作為與文蛤混養之工作魚種,以清除池中大型藻類。近年來,與文蛤混養之工作魚種每逢冬季寒流來襲之際常大量死亡,同時造成養殖業嚴重損失。本研究針對金錢魚幼魚於長期低溫馴養三十天後,面臨寒流低溫之刺激下,是否提升其低溫耐受能力,並與虱目魚低溫耐受能力相比較。熱休克蛋白 (HSP70) 主要功能在維持細胞正常生理機能,幫助受到環境迫害、失去功能的蛋白質重新正常摺疊。因此,利用極限耐受溫度實驗 (Critical thermal minima) 測定金錢魚於三個馴養溫度組別 (17.0、22.5和28.0°C) 之最低耐受溫度,並比較將經過馴養的金錢魚回復到正常水溫三十天後之最低耐受溫度。另外,利用西方墨點法 (Western Blotting) 探討不同水溫馴養後金錢魚體內熱休克蛋白質 (Heat shock protein) 表現量之改變情形。結果顯示,虱目魚最低耐受溫度達15.0±0.5°C,且死亡率達70%。而金錢魚幼魚馴養於不同水溫一個月後,水溫28°C組最低耐受溫度達14.0±0.5°C;水溫22.5°C 組最低耐受溫度可達8±0.5°C;水溫17.0°C組最低耐受溫度可達6.0±0.5°C。此外,相比虱目魚高死亡率,金錢於三個溫度組達最低耐受溫度後皆無死亡率情形發生。在HSP70表現方面,經過一個月馴養於不同水溫後,水溫22.5°C組HSP70表現量與水溫28°C組並無顯著差異;而水溫17.0°C組HSP70表現量顯著大於水溫28.0°C組。另外,將馴養於不同溫度三十天後的金錢魚,回復到水溫28.0°C繼續馴養三十天後,再測定其最低耐受溫度。結果顯示,水溫28.0°C組最低耐受溫度依舊達14.0±0.5°C;水溫22.5°C 組最低耐受溫度達12.0±0.5°C;水溫17.0°C組最低耐受溫度可達11.0±0.5°C。經過三十天馴養後,將三個溫度組之金錢魚曝露至水溫15.0°C並測定其肝組織中HSP70表現量改變情形。結果顯示,水溫17.0°C組經過馴養後,暴露於水溫15.0°C中HSP70並無顯著改變情形;而水溫28.0°C和22.5°C組之HSP70表現量皆顯著提升。本研究結果顯示,長期低溫馴養能提升金錢魚最低耐受溫度。且經過回復到水溫28.0°C三十天後之金錢魚,其最低耐受溫度雖上升,卻依舊低於未經過低溫馴養之個體。本研究對於金錢魚是否能於冬天與文蛤混養提供基礎的生理學建議。
Abstract
The spotted scat is usually farmed for controlling macro-algae density in poly-aquaculture practice in Taiwan. Nowadays, massive mortality of economic aquaculture fish poly-cultured with hard clam, such as milkfish, often occurs during dramatic temperature drop in winter. The present study intended to estimate whether the capability of cold tolerance of the spotted scat (Scatophagus argus) would be altered after 30 days acclimation to different water temperatures. Moreover, heat shock protein 70 (HSP70) plays a significant role in cytoprotection for maintaining cellular homeostasis to refold and repair the proteins which are damaged by the environment stressors. Hence, the correlation between protein expression of hepatic HSP70 and low temperature tolerance ability of spotted scat were investigated. This study revealed that critical temperature minima (CTMin) after 30 days acclimation were observed at 14±0.5, 8±0.5 and 6±0.5°C for S. argus acclimated at 28.0±0.5, 22.5±0.5 and 17.0±0.5°C, respectively. Individuals of the acclimation experiment were then transferred back to 28°C for additional 30 days and their CTMin was examined again. The CTMin values for S. argus previously acclimated at 28.0±0.5, 22.5±0.5 and 17.0±0.5°C were 14±0.5, 12±0.5 and 11±0.5°C, respectively. HSP70 expression level of liver in S. argus acclimated for 30 days at different temperatures was highest at 17.0°C and the lowest at 22.5°C. These results indicated that the cold tolerance capacity of S. argus may be enhanced by acclimating to low temperature. Despite transferring back to 28°C for 30 days, fish which acclimated to low temperature had better cold tolerance capacity than untreated fish. Besides, acclimation to 22.5°C for S. argus may be a practical way to enhanced cold tolerance during winter to below 10°C since fish acclimated to 17°C had high HSP70 expression level and lower locomotion.
目次 Table of Contents
學位論文審定書 i
謝辭 ii
摘要 iii
Abstract iv
Content vi
1. Introduction 1
1.1 Temperature acclimation 1
1.2 Heat shock proteins 70 (HSP70) 3
1.3 The current situation of poly-cultured species with hard clam 7
2. Materials and methods 10
2.1 Stablization conditions 10
2.2 Low temperature acclimation 10
2.3 Effect of additional acclimation to 28°C after low temperature acclimation 12
2.4 Critical thermal minima (CTMin) determination 12
2.5 Cold exposure experiment 14
2.6 Sampling liver tissue and protein extraction 15
2.7 Western blot analysis 16
2.8 Statistical analysis 17
3. Results 19
3.1 Critical thermal minima (CTMin) after 30 days acclimation 19
3.2 Critical thermal minima (CTMin) after additional 30 days acclimation at 28°C 20
3.3 Heat shock protein70 (HSP70) expression level after 30 days acclimation 21
3.4 HSP70 expression level during cold exposure trial 22
3.5 Feed intake during 30 days acclimation 23
4. Discussions 24
4.1 Low temperature acclimation triggers cold tolerance 24
4.2 Tolerance capability after additional 30 days recovery period 25
4.3 30 days acclimation induces HSP70 expression in response to cold acclimation 26
4.4 HSP70 expression level during cold exposure trial at 15°C 29
4.5 Aquaculture application 30
5. Conclusions 32
Reference 33
Figures 44
參考文獻 References
Barry, T.P. and Fast, A.W. 1988. Natural history of the spotted scat (Scatophagus argus) In: A.w.Fast (Ed) Spawning induction and pond culture of the spotted scat (Scatophagus argus) in Philippines. Hawaii Institute of Marine biology, 4-30.
Barry, T. P. and Fast, A. W.. 1992. Biology of the Spotted Scat (Scatophagus argus) in the Philippines. Asian Fisheries Science 5, 163-179.
Beitinger, T. L. and Bennett, W. A.. 2000. Quantification of the role of acclimation temperature in temperature tolerance of fishes. Environmental Biology of Fishes 58, 277-288.
Brun, N.T., Bricelj, V.M., MacRae, T.H., Ross, N.W., 2009. Acquisition of thermotolerance in bay scallops, Argopecten irradian irradians, via differential induction of heat shock proteins. J. Exp. Mar. Biol. Ecol. 371, 77-83.
Central Weather Bureau, https://www.cwb.gov.tw, 2017-09-26.
Chang, S. L., Cheng, M. C., Chen, T. Y.. 2006. The Potential Herbivorous Fish- Scatophagus argus. FRI Newsletter. Fisheries Research Institute, COA. 32-34. (In Chinese)
Cheng, C. H., Ye, C. X., Guo, Z. X. and Wang, A. L.. 2017. Immune and physiological responses of pufferfish (Takifugu obscurus) under cold stress. Fish and Shellfish Immunology 64, 137-145.
Chou, Y. H., Kuo, J. C., Lin, Y. C., Yeh, X. L.. 2011. Application of Herbivorous Fish in Mariculture. Annual Report. Fisheries Research Institute, COA. 41. (In Chinese)
Chou, Y. H., Kuo, J. C., Lin, Y. C., Yeh, X. L.. 2012. Application of Herbivorous Fish in Mariculture. Annual Report. Fisheries Research Institute, COA. 32. (In Chinese)
Chou, Y. H., Kuo, J. C., Lin, Y. C., Yeh, X. L.. 2013. Diverse Technology of Functional Fish in Hard Clams Culture. Annual Report. Fisheries Research Institute, COA. 33. (In Chinese)
Currie, R. J., Bennett, W. A. and Beitinger, T. L.. 1998. Critical thermal minima and maxima of three freshwater game-fish species acclimated to constant temperatures. Environmental Biology of Fishes 51, 187-200.
Currie, S.. 2011. Heat Shock Proteins and Temperature. Temperature. 1732-1737.
Dalvi, R. S., Pal, A. K., Tiwari, L. R., Das, T. and Baruah, K.. 2009. Aquaculture 295, 116-119.
Denisse, Re.A., Díaz, F., Ponce-Rivas, E., Giffard, I., Muñoz-Marquez, M. E., Sigala-Andrade, H.M., 2012. Combined effects of temperature and salinity on the thermotolerance and osmotic pressure of juvenile white shrimp Litopenaeus vannamei (Boone). J. Therm. Biol. 37, 413-418.
Dieyz, T. J. and Somero, G. N.. 1992. The threshold induction temperature of the 90-kDa heat shock protein is subject to acclimatization in eurythermal goby fishes (genus Gillichthys). Proceedings of the National Academy of Sciences Vol.89, 3389-3393.
Donaldson, M. R., Cooke, S. J., Patterson, D.A., Macdonald, J. S. 2008. Cold shock and fish. Journal of Fish Biology 73, 1491-1530.
Feder M.E. and Hofmann G.E.. 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual Review Physiology 61, 243-282.
Ford, T. and Beitinger, T. L.. 2005. Temperature tolerance in the gold fish, Carassius auratus. Journal of Thermal Biology 30, 147-152.
Gui, L., Zhang, P., Liang, X., Su, M., Wu, D. and Zhang, J. (2016). Adaptive responses to osmotic stress in kidney-derived cell lines from Scatophagus argus, a euryhaline fish. Gene 583, 134-140.
Hochachka, P. W., Somero, G. N.. 2002. Biochemical adaptation: mechanism and process in physiological evolution, Vol 480. Oxford University Press, New York
Ho, Y. D., Chou, Y. H.. 2017. Culture of Hard Clams. Fisheries Research Institute, COA. (In Chinese)
Hofmann, G. E., Buckley, B. A., Place, S. P., Zippay, M. L.. 2002. Molecular chaperones in ectothermic marine animals: biochemical function and gene expression. Integr Comp Biol 42, 808-814
Hu, G., Yan, X., Qin, Y., Nie, H.. 2014. Molecular cloning and expression analysis of inhibitor of growth protein 3 (ING3) in the Mamila clam, Ruditapes philippinarum. Molecular Biology 41. 3583-3590.
Itskovich V. B., Shigarova, A. M., Glyzina, O. Y., Kaluzhnaya, O. V. and Borovskii, G. B.. 2018. Heat shock protein 70 (HSP70) response to elevated temperatures in the endemic Baikal sponge Lubomirskia baicalensis. Ecological Indicators 88, 1-7.
Jobling. 1995. Environmental biology of fishes. Chapman and Hall Publishers, London, 455.
Kiang, J. G. and Tsokos, G. C.. 1998. Heat Shock Protein 70 kDa: Molecular Biology, Biochemistry, and Physiology. Pharmacol. Ther. Vol.80, No.2, 183-201.
Kim, J. H., Jeong, S. Y., Kim, P. J., Dahms, H. U. and Han, K. N.. 2017. Bio-effect-monitoring of long-term thermal wastes on the oyster, Crassostrea gigas, using heat shock proteins. Marine Pollution Bulletin 119, 359-364.
Kır, M., Sunar, M. C. and Altındağ, B. C.. 2017. Thermal tolerance and preferred temperature range of juvenile meagre acclimated to four temperatures. Journal of Thermal Biology 65, 125-129.
Li, M., Li, X. J., Lü, L. H. and Huo, M. F.. 2018. The effect of acclimation on heat tolerance of Lasioderma serricorne (Fabricius) (Coleoptera: Anobiidae). Journal of Thermal Biology 71, 153-157.
Lu, K., Chen, X., Liu, W. T., Zhang, Z. C., Wang, Y., You, K. K., Li, Y., Zhang, R. B. and Zhou, Q.. 2017. Characterization of heat shock protein 70 transcript from Nilaparvata lugens (Stål): Its response to temperature and insecticide stresses. Pesticide Biochemistry and Physiology 142, 102-110.
Lutterschmidt, T. L., Bennett, W. A. and McCauley, R. W.. 2000. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environmental Biology of Fishes 58, 237-275.
Maio, A. D.. 1999. Heat Shock Proteins: Facts, Thoughts, and Dreams. SHOCK, Vol.11, No.1, 1-12.
Mayer, M. P. and Bukau, B.. 2005. HSP70 chaperones: Cellular functions and molecular mechanism. Cellular and Molecular Life Sciences 62, 670-684.
Meng, X. L., Dong, Y. W., Dong, S. L., Yu, S. S. and Zhou, X.. 2011. Mortality of the sea cucumber, Apostichopus japonicus Selenka, exposed to acute salinity decrease and related physiological responses: Osmoregulation and heat shock protein expression. Aquaculture 316, 88-92.
Mu, X. J., Su, M. L., Gui, L., Liang, X. M., Zhang, P. P., Hu, P., Liu, Z. H. and Zhang, J. B.. 2015. Comparative renal gene expression in response to abrupt hypoosmotic shock in spotted scat (Scatophagus argus). General and Comparative Endocrinology 215, 25-35.
Nakano, K., Iwama, G. K.. 2002. The 70-kDa heat shock protein response in two intertidal sculpins, Oligocottus maculosus and O. snyderi: relationship of HSP70 and thermal tolerance. Comparative Biochemistry and Physiology Part A 133, 79-94.
Nie, H. T. ,Liu, L. H., Huo, Z. M., Chen, P., Ding, J. F., Yang, F. and Yan, X. W.. 2017. The HSP70 gene expression responses to thermal and salinity stress in wild and cultivated Manila clam Ruditapes philippinarum. Aquaculture 470, 149-156.
Nie, H. T., Chen, P., Huo, Z. M., Chen, Y., Hou, X. L., Yang, F. and Yan, X. W.. 2016. Effects of temperature and salinity on oxygen consumption and ammonia excretion in different colour strains of the Manila clam, Ruditapes philippinarum. Aquaculture Research, 1-9.
Parsell, D. A. and Lindquist, S.. 1993. The function of heat-shock protein in stress tolerance: degradation and reactivation of damaged proteins. Annual Review Genetics 27, 437-496.
Place, S.P., Zippay, M.L., Hofmann, G.E., 2004. Constitutive roles for inducible genes: evidence for the alteration in expression of the inducible HSP70 gene in Antarctic notothenioid fishes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, 429-436.
Puisay, A., Pilon, R., Goiran, C. and Hedouin, L.. 2018. Thermal resistances and acclimation potential during coral larval ontogeny in Acropora pulchra. Marine Environmental Research 135, 1-10.
Ravaux, J., Leger, N., Rabet, N., Fourgous, C., Voland, G., Zbinden, M. and Shillito, B.. 2016. Plasticity and acquisition of the thermal tolerance (upper thermal limit and heat shock response) in the intertidal species Palaemon elegans. Journal of Experimental Marine Biology and Ecology 484, 39-45.
Roberts, R.J., Agius, C., Saliba, C., Bossier, P., Sung, Y.Y., 2010. Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health. J. Fish Dis. 33, 780-80.
Schlesinger, M. J.. 1990. Heat Shock Proteins. The Journal of Biological Chemistry Vol.265, No.21, 12111-12114.
Shao, K. T.. Taiwan Fish Database, WWW Web electronic publication. http://fishdb.sinica.edu.tw, (2018-5-18).
Somero, G.N. 2010. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213, 912-920.
Somero, G.N., 2012. The physiology of global change: linking patterns to mechanisms. Annu. Rev. Mar. Sci. 4, 39-61.
Song, Y., Su, M. L., Liu, N. X. and Zhang, J. B.. 2012. Studies on low temperature resistance and nutritional needs of Scatophagus argus juveniles. Journal of Shanghai Ocean University, Vol.21, No.5.
Su, M. L., Hu, P., Zhou, J. N., Ma, J., Li, S. Q., Gui, L. and Zhang, J. B.. 2016. Branchial transcriptional responses of spotted scat, Scatophagus argus, to acute hypo-osmotic stress. Agri Gene 1, 100-108.
Sung, Y. Y., Rahman, N. A., Mohamed Shazili, N. A., Chen, S. J., Lv, A. J., Sun, J. F., Shi, H. Y. and MacRaee, T. H.. 2018. Non-lethal heat shock induces HSP70 synthesis and promotes tolerance against heat, ammonia and metals in post-larvae of the white leg shrimp Penaeus vannamei (Boone, 1931). Aquaculture 483, 21-26.
Sung, Y. Y., Rahman, N. A., Shazili, N. A. M., Chen, S., Lv, A., Sun, J., Shi H., MacRae, T. H.. 2018. Non-lethal heat shock induces HSP70 synthesis and promotes tolerance against heat, ammonia and metals in post-larvae of the white leg shrimp Penaeus vannamei (Boone, 1931). Aquaculture 483, 21-26.
Sung, Y.Y., MacRae, T.H., 2011. Heat shock proteins and disease control in aquatic organisms. J. Aquacult. Res. Dev. 2, 006.
Sung, Y.Y., Roberts, R.J., Bossier, P., 2012. Enhancement of HSP70 synthesis protects common carp, Cyprinus carpio L., against lethal ammonia toxicity. J. Fish Dis. 35, 563-568.
Tang, C.H., Leu, M.Y., Shao, K., Hwang, L.Y. and Chang, W.B.. 2014. Short-term effects of thermal stress on the responses of branchial protein quality control and osmoregulation in a reef-associated fish, Chromis viridis. Zoological Studies 53, 21.
Teigen, L. E., Orczewska, J. I.. McLaughlin, J. and O’Brien, K. M.. 2015. Cold acclimation increases levels of some heat shock protein and sirtuin isoforms in threespine stickleback. Comparative Biochemistry and Physiology, Part A 188, 139-147.
Todgham, A. E., Hoaglund, E. A. and Hofman, G. E.. 2007. Is cold the new hot? Elevated ubiquitin-conjugated protein levels in tissues of Antarctic Wsh as evidence for cold-denaturation of proteins in vivo. Journal of Comparative Physiology B 117, 857-866.
Todgham, A. E., Schulte, P. M. and Iwama, G. K.. 2005. Cross-tolerance in the tidepool sculpin: the role of heat shock proteins. Physiological and Biochemical Zoology Vol.78, No.2, 133-144.
Vo, P. and Gridi-Papp, M.. 2017. Low temperature tolerance, cold hardening and acclimation in tadpoles of the neotropical túngara frog (Engystomops pustulosus). Journal of Thermal Biology 66, 49-55.
Yamashita, M., Yabu, T. and Ojima, N.. 2010. Stress Protein HSP70 in Fish. Aqua-BioScience Monographs Vol.3, No.4, 111-141.
Yang, S. P., Yang, L. Z., Chen, Z. M. and Su, C. B.. 2014. Effects of Abrupt Changes in Salinity, pH and Temperature on Survival of Juvenile Scatophagus argus. Journal of Anhui Agri, Sci., 42 (27), 9386-9389.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code