Responsive image
博碩士論文 etd-0726120-134600 詳細資訊
Title page for etd-0726120-134600
論文名稱
Title
結合基因演算法和超寬頻雷達技術實現非接觸式心跳量測
Imperceptible heart rate measurement achieved by the combination of genetic algorithm and UWB radar technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-07-18
繳交日期
Date of Submission
2020-08-26
關鍵字
Keywords
訊號處理分析、長照、基因演算法、心跳量測、超寬頻雷達
signal processing analysis, UWB, long-term care, heart rate measurement, genetic algorithm
統計
Statistics
本論文已被瀏覽 5850 次,被下載 110
The thesis/dissertation has been browsed 5850 times, has been downloaded 110 times.
中文摘要
隨著醫療科技的進步台灣逐步邁向超級高齡社會。依據行政院國發會之人口推估,到了2026年我國每五人中就有一位高齡者,而至2045年預估達每三人中就有一位高齡者。對於高齡者而言如果能持續偵測心臟活動狀態,對於提前發現心臟異常、預測相關心血管疾病有著重要意義。在家庭人力不足的情況下以較簡易的方式追蹤長輩們的身體狀況,更能讓子女的負擔較為減輕。對於長照機構而言,追蹤機構內住民生理數據也是一項花費大量人力資源的工作。
目前市場上常見的裝置都需要受測者配戴或是黏貼專用的儀器以進行心跳監測。這些都可能會對睡眠品質產生負面影響,對於燒燙傷患者或是新生兒等皮膚較脆弱的族群來說長期觀測更容易造成身體的不適。
本研究利用超寬頻雷達波來進行心率量測,不需要黏貼在人體表面進行量測,能有效避免受測者的不適。且本研究突破過往研究雷達所放置的位置,改將雷達至於床墊內,不影響受測者平日生活作息。過去的研究已經為超寬頻雷達波量測心跳提供了許多不同的分析方法,但若將UWB雷達在床墊內測量,其原始訊號較過去研究所擺放的位置產生更多的雜訊,用人工的方式調整參數其效果有限。本研究將利用基因演算法優化分析方法,同時與過去的研究比較是否能達到相似的誤差水準。
Abstract
As medical technology advances, Taiwan is gradually becoming an aging society. According to the statistics from the National Development Council, there will be 1 senior citizen out of 5 citizens by 2026, and 1 senior citizen out of 3 citizens by 2045. Consistent sensing of heartbeat is significant for early detection of arrythmia and cardiovascular disease risk prediction. A simpler and easier way to track the physical condition of the elders can effectively lower the burden of the families in lack of manpower support. For long-term care institutions, keeping track of the physical statistics of residents is also a human resource consuming work. The common heartbeat monitoring devices on the present market require subjects to wear the device or stick the device on their body. This way of monitoring may have a negative impact on the quality of sleep and is also likely to cause physical discomfort for people with delicate skin such as the burn patients or the newborns.
This study uses ultra-wideband radar waves to measure heart rate; with nothing attached to the surface of the human body, it can effectively avoid the discomfort of the subject. Furthermore, this study breaks through the limitation of the past studies in terms of the place where the radar is placed. Having the radar placed in the mattress, this study keeps the daily routine of the subject unaffected by the measurement. Past studies have provided many different analysis methods for ultra-wideband radar wave measurement of heartbeat; however, when UWB radar is placed in a mattress, its original signals will include more noise than the original signals in the past research. Manual adjustment of the parameter has only a limited effect. This study uses genetic algorithms to optimize the analysis method and examines whether its absolute error is comparable with the absolute error of the past studies.
目次 Table of Contents
目錄
論文審定書 i
中文摘要 ii
英文摘要 iii
第一章 序論 1
1.1研究背景與動機 1
1.2 研究問題 2
第二章 文獻探討 4
2.1 UWB雷達 4
2.2 濾波方式 5
2.2.1 帶通濾波器(band-pass filter) 5
2.2.2 傅立葉變換(Fourier transform) 6
2.2.3 短時距傅立葉變換(windowed Fourier transform) 7
2.3 基因演算法 8
2.3.1 介紹 8
2.3.2 演算法流程 9
2.3.3 編碼 9
2.3.4 初始化基因序母體 9
2.3.5 評估基因序 10
2.3.6 複製(Selection) 10
2.3.7 交配(Crossover) 12
2.3.8 突變(Mutation) 13
2.4 光體積描記圖(PHOTOPLETHYSMOGRAPHY, PPG) 14
第三章 研究方法 16
3.1 系統架構 16
3.2 原始資料 20
3.3 資料分析 23
3.3.1 帶通過濾 23
3.3.2 突波調整 24
3.3.3 身體移動調整 25
3.3.4 傅立葉轉換過濾 26
3.3.5 心跳計算 27
3.4 參數優化 28
3.4.1 基因編碼 29
3.4.2 基因序評估 36
3.4.3 演算法實作 36
第四章 實驗與成果 37
4.1 實驗流程 37
4.2 參數優化 37
4.3 資料分析 45
4.4 實驗成果探討 46
4.5 實驗成果驗證 47
第五章 結論 49
5.1 總結與研究貢獻 49
5.2 研究限制 49
5.3 未來展望 50
參考文獻 51
參考文獻 References
參考文獻
Allen, J. (2007). Photoplethysmography and its application in clinical physiological measurement. Physiol Meas, 28(3), R1-39. doi:https://doi.org/10.1088/0967-3334/28/3/R01
Aubert, A. E., Seps, B., & Beckers, F. (2003). Heart rate variability in athletes. Sports Med, 33(12), 889-919. doi:https://doi.org/10.2165/00007256-200333120-00003
Chia, M. Y. W., Leong, S. W., Sim, C. K., & Chan, K. M. (2005). Through-wall UWB radar operating within FCC's mask for sensing heart beat and breathing rate. Paper presented at the 2005 European Microwave Conference.
Commission, F. C. (2002). FIRST REPORT AND ORDER.
Davis, S. K., Van Veen, B. D., Hagness, S. C., & Kelcz, F. (2008). Breast tumor characterization based on ultrawideband microwave backscatter. IEEE Trans Biomed Eng, 55(1), 237-246. doi:https://doi.org/10.1109/TBME.2007.900564
Gen, M., & Cheng, R. (1999). Genetic Algorithms and Engineering Optimization.
Gordon, J. W. (1877). Certain Molar Movements of the Human Body produced by the Circulation of the Blood. J Anat Physiol, 11(Pt 3), 533-536. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17231163
Haupt, R. L., & Haupt, S. E. (2003). Practical Genetic Algorithms.
Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence.: U Michigan Press.
Hong, J.-S., & Lancaster, M. J. (2001). Microstrip Filters for RF/Microwave Applications.
Hu, X., & Jin, T. (2016). Short-Range Vital Signs Sensing Based on EEMD and CWT Using IR-UWB Radar. Sensors, 16(12). doi:https://doi.org/10.3390/s16122025
Huang, C. Y., Chan, M. C., Chen, C. Y., & Lin, B. S. (2014). Novel wearable and wireless ring-type pulse oximeter with multi-detectors. Sensors (Basel), 14(9), 17586-17599. doi:https://doi.org/10.3390/s140917586
Immoreev, I., & Tao, T.-H. (2008). UWB radar for patient monitoring. IEEE Aerospace and Electronic Systems Magazine, 23(11), 11-18. doi:https://doi.org/10.1109/MAES.2008.4693985
Inan, O. T., Etemadi, M., Wiard, R. M., Giovangrandi, L., & Kovacs, G. T. (2009). Robust ballistocardiogram acquisition for home monitoring. Physiol Meas, 30(2), 169-185. doi:10.1088/0967-3334/30/2/005
Junnila, S., Akhbardeh, A., & Värri, A. (2008). An Electromechanical Film Sensor Based Wireless Ballistocardiographic Chair: Implementation and Performance. Journal of Signal Processing Systems, 57(3), 305-320. doi:https://doi.org/10.1007/s11265-008-0307-2
Kevat, A. C., Bullen, D. V., Davis, P. G., & Kamlin, C. O. (2017). A systematic review of novel technology for monitoring infant and newborn heart rate. Acta Paediatr, 106(5), 710-720. doi:10.1111/apa.13786
Khan, F., & Cho, S. H. (2017). A Detailed Algorithm for Vital Sign Monitoring of a Stationary/Non-Stationary Human through IR-UWB Radar. Sensors, 17(2). doi:https://doi.org/10.3390/s17020290
Khanokh, B., Slovik, Y., Landau, D., & Nitzan, M. (2004). Sympathetically induced spontaneous fluctuations of the photoplethysmographic signal. Med Biol Eng Comput, 42(1), 80-85. doi:https://doi.org/10.1007/BF02351014
Kim, J. D., Lee, W. H., Lee, Y., Lee, H. J., Cha, T., Kim, S. H., . . . Park, H.-K. (2019). Non-contact respiration monitoring using impulse radio ultrawideband radar in neonates. Royal Society Open Science, 6(6), 190149. doi:https://doi.org/10.1098/rsos.190149
Lazaro, A., Girbau, D., & Villarino, R. (2010). Analysis of Vital Signs Monitoring Using an Ir-Uwb Radar. Progress In Electromagnetics Research, 100, 265-284. doi:http://dx.doi.org/10.2528/PIER09120302
Leib, M., Menzel, W., Schleicher, B., & Schumacher, H. (2010). Vital signs monitoring with a UWB radar based on a correlation receiver. Paper presented at the Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, Spain.
Lemay, M., Bertschi, M., Sola, J., Renevey, P., Parak, J., & Korhonen, I. (2014). Application of Optical Heart Rate Monitoring. In Wearable Sensors (pp. 105-129).
Mack, D. C., Patrie, J. T., Suratt, P. M., Felder, R. A., & Alwan, M. A. (2009). Development and preliminary validation of heart rate and breathing rate detection using a passive, ballistocardiography-based sleep monitoring system. IEEE Trans Inf Technol Biomed, 13(1), 111-120. doi:https://doi.org/10.1109/TITB.2008.2007194
Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354-381. doi:https://doi.org/10.1093/oxfordjournals.eurheartj.a014868
Ngo, N. Q., & Le Nguyen, B. (1994). Novel realization of monotonic Butterworth-type lowpass, highpass, and bandpass optical filters using phase-modulated fiber-optic interferometers and ring resonators. Journal of Lightwave Technology, 12(5), 827-841. doi:10.1109/50.293975
Pantelopoulos, A., & Bourbakis, N. G. (2010). A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(1), 1-12. doi:https://doi.org/10.1109/TSMCC.2009.2032660
Severinghaus, J. W. (2007). Takuo Aoyagi: discovery of pulse oximetry. Anesth Analg, 105(6 Suppl), S1-4, tables of contents. doi:10.1213/01.ane.0000269514.31660.09
Solberg, L. E., Balasingham, I., Hamran, S.-E., & Fosse, E. (2009). A feasibility study on aortic pressure estimation using UWB radar. Paper presented at the 2009 IEEE International Conference on Ultra-Wideband.
Tavakolian, K., Vaseghi, A., & Kaminska, B. (2008). Improvement of ballistocardiogram processing by inclusion of respiration information. Physiol Meas, 29(7), 771-781. doi:10.1088/0967-3334/29/7/006
Virkkala, J. M. K. J. (2007). FFT averaging of multichannel BCG signals from bed mattress sensor to improve estimation of heart beat interval. Paper presented at the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
Watson-Watt, R. (1945). Radar in War and in Peace. Nature, 156(3959), 319-324. doi:https://doi.org/10.1038/156319a0
Webster, J. G. (1997). Design of Pulse Oximeters. London: IOP Publishing Ltd.
世界衛生組織. (2020). Cardiovascular diseases. Retrieved from http://www.who.int/topics/cardiovascular_diseases/en/
國家發展委員會. (2018). 中華民國人口推估(2018 至 2065 年).
陳敏郎. (2019). 健康意識、健康生活型態與保健食品使用行為之認知與影響因素之研究-以台中市某地區民眾為例. 弘光學報, 83, P91 - 107. doi:http://dx.doi.org/10.6615%2fHAR.201903_(83).0008
葉松林. (2006). 解模糊關係方程式之改良演算法及非線性最佳化問題應用. (碩士). 臺灣師範大學,
劉健勤. (1997). 人工生命理論及其應用: 冶金工業出版社.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code