Responsive image
博碩士論文 etd-0723119-175622 詳細資訊
Title page for etd-0723119-175622
論文名稱
Title
顧客購買因素對銷售績效之影響: 顧客口碑分析
The Effects of Customer Buying Factors on Sales Performance:Electronic Word of Mouth Analysis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-15
繳交日期
Date of Submission
2019-08-23
關鍵字
Keywords
情緒分析、文字探勘、推敲可能性模式、銷售績效、網路口碑
Sentiment Analysis, Text Mining, Elaboration Likelihood Model, eWOM, Sales Performance
統計
Statistics
本論文已被瀏覽 5970 次,被下載 52
The thesis/dissertation has been browsed 5970 times, has been downloaded 52 times.
中文摘要
網路口碑 (Electronic Word-of-Mouth , eWOM) 的影響力一直以來都受到學術界及行銷界的密切關注。隨著電子商務的蓬勃發展,消費者能夠輕易地取得其他消費者的評論資料,作為購物決策的參考。本研究採用推敲可能性模式作為研究架構,以認知科學的角度,分析評論中涉及理性思考的中央路徑因素及感性思考的周邊路徑因素對銷售績效之影響,以及這些因素的影響力是否會因為不同商品類型而有差異。中央路徑的因素包含評論長度、評論可讀性及理性屬性字典比例;周邊路徑的因素包含評論數量、平均評等、評論者評等、感性屬性字典比例以及情緒相關變數。
本研究蒐集Amazon網站上「搜尋品-筆記型電腦」及「經驗品-唇膏」的排名及評論,利用文字探勘的技術找出評論內容的重要特性,設計一套顧客購買因素方法,並透過多變量分析驗證這些因素對銷售排名的影響。研究結果發現,幾乎所有評論要素都會對銷售排名造成影響,但是不同商品類型在某些方面卻有些差異。例如,兩種商品中出現理性的評論皆會對銷售績效產生正向之影響,但在經驗品中偏向感性的評論則會對銷售績效不利;評論壽命對銷售績效的影響則是搜尋品遠大於經驗品。在二階模型的結果中,不同商品類型的中央路徑以及周邊路徑產生了良好的調節作用,其中周邊路徑的評論數量及平均評等的影響效果最為顯著。因此顯示出本研究應用推敲可能性模式檢驗不同商品類型的網路評論對於銷售績效之影響效果上,具備良好的解釋能力。

關鍵字:網路口碑、銷售績效、推敲可能性模式、文字探勘、情緒分析
Abstract
The effects of Electronic Word-of-Mouth have been deeply concerned by academics and marketers. With the rapid development of electronic commerce, consumers can easily acquire review data from other reviewers as reference. The purpose of this study is to analyze the influence of central route factors related to rational thinking and peripheral route factors related to emotional thinking based on elaboration likelihood model from cognitive science perspective, which vary for different types of products. In the research, the factors of central route include review length, readability and ratio of rational lexicon. On the other hand, peripheral route factors include volume, ratings, reviewers’ ratings, ratio of emotional lexicon, and variables related to emotions.
We collected product reviews of laptops and lipsticks from Amazon.com and found the important features with text mining techniques. We designed an approach of customer factors and applied the multivariate analysis to verify the impact on the sales performance. The results suggest that almost all of the variables affect sales performance, but there are some differences based on product types. For example, two types of products which contain rational reviews will affect the sales performance, but emotional reviews of experience product have a negative impact on sales performance. However, reviews’ longevity of search product has a greater impact on sales performance than experience product. In the results of second-order model, the overall central route and peripheral route of different product types have good moderating effects. Besides, the effects of volume and ratings of peripheral route are more significant. It demonstrates that ELM provides a good explanatory power of the online reviews’ effects on sales performance, which vary in different types of products.
Keywords: eWOM, Sales Performance, Elaboration Likelihood Model, Text Mining, Sentiment Analysis 
目次 Table of Contents
論文審定書 i
公開授權書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vi
圖次 viii
表次 ix
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究流程 3
第二章 文獻探討 5
第一節 網路口碑 5
第二節 推敲可能性模式對於商品評論的影響 15
第三節 文字探勘與情緒分析 18
第三章 研究架構與假說 24
第一節 研究架構 24
第二節 研究假說 25
第四章 研究方法與資料 31
第一節 次級資料分析 31
第二節 資料來源與變數說明 31
第三節 資料處理 33
第四節 分析方法 38
第五節 分析模型 56
第五章 研究結果 59
第一節 研究模型驗證 59
第二節 結構模型方程式分析 67
第三節 顧客購買因素分析 73
第六章 結論與建議 77
第一節 研究發現 77
第二節 研究貢獻 81
第三節 研究限制與未來建議 82
參考文獻 83
附錄一 專家問卷 91
附錄二 問卷統計結果 99
參考文獻 References
Amblee, N., & Bui, T.X. (2007). The Impact of Electronic-Word-of-Mouth on Digital Microproducts: An Empirical Investigation of Amazon Shorts. ECIS.
Amblee, N., & Bui, T.X. (2008). Can brand reputation improve the odds of being reviewed on-line? International Journal of Electronic Commerce, 12(3), 11-28.
Amblee, N., & Bui, T.X. (2011). Harnessing the influence of social proof in online shopping: The effect of electronic word of mouth on sales of digital microproducts. International Journal of Electronic Commerce, 16(2), 91-113.
Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psy Bickart logical bulletin, 103(3), 411.
Anderson, E. W., & Salisbury, L. C. (2003) The Formation of Market-level Expectations and its Covariates, Journal of Consumer Research 30(1), 115-24.
Arndt, J. (1967). Role of Product-Related Conversations in the Diffusion of a New Product. Journal of Marketing Research, 4(3), 291-295.
Archak, N., Ghose, A., & Ipeirotis, P. G. (2011). Deriving the Pricing Power of Product Features by Mining Consumer Reviews. Management Science, 57(8), 1485-1509.
Bakker, I. C., & de Boon, J. C. (2012). Zorg voor mens en omgeving, Het zintuig als maatstaf, KCWZ,Utrecht, 84-89.
Beal, G. M., & Rogers, E. M. (1957). Informational sources in the adoption process of new fabrics. Journal of Home Economics, 49(8), 630-634.
Bei, L. T., Chen, E. Y. I, & Widdows, R. (2004). Consumers’ online information search behavior and the phenomenon of search vs. experience products. Journal of family and economic issue, 25(4), 449-467.
Berger, J., & Milkman, K. L. (2011). What makes online content viral? Journal of Marketing Research, 49(2), 192-205.
Bloom, P. N., & Pailin, J. E. (1995). Using information situations to guide marketing strategy. Journal of Consumer Marketing, 12(2), 19-27.
Bickart, B. (2002). Expanding the scope of word of mouth: Consumer-to-consumer information on the internet. Advances in Consumer Research, 29(1), 428-430.
Bone, P. F. (1992). Determinants of word-of-mouth communications during product consumption. Advances in Consumer Research, 19(1), 579-583
Bowman, D., & Narayandas, D. (2001) Managing Customerinitiated Contacts with Manufacturers: The Impact on Share of Category Requirements and Word-of-mouth Behavior. Journal of Marketing Research, 38(3), 281-97.
Bradley, M. M., & Lang, P. J. (1999). Affectivenorms for English words (ANEW): Instruction manual and affective ratings. Technical report, The Center for Research in Psychophysiology.
Brooks, R. C. J. (1957). “Word-of-mouth” advertising in selling new products. Journal of Marketing, 22(2), 154-161.
Brown, J. J., & Reingen, P. H. (1987). Social Ties and Wordof-mouth Referral Behavior. Journal of Consumer Research 14(3), 350.
Brown, T. J., Barry, T. E., Dacin, P. A, & Gunst, R. F. (2005). Spreading the word: Investigating antecedents of consumers’positive word-of-mouth intentions and behaviors in a retailing context. Journal of the Academy of Marketing Science, 33(2),123-138.
Chatterjee, P. (2001). Online Reviews: Do Consumers use Them? Consumer Research, 28, 129-133.
Chen, P. S., Wu, S., & Yoon, J. (2004). The Impact of Online Recommendations and Consumer Feedback on Sales. ICIS.
Chevalier, J.A., & Mayzlin, D. (2006). The Effect of Word of Nouth on Sales:Online Book Reviews. Journal of Marketing Research, 43(3), 345-354.
Chen, Y., & Xie, J. (2008). Online consumer review: Word-of-mouth as a news element of marketing communication mix. Management Science, 54(3), 477-491.
Cheema, A., & Kaikati, A.M. (2010). The effect of need for uniqueness on word of mouth. Journal of Marketing Research, 47(3), 553-563.
Chintagunta P. K., Gopinaths S., & Venkatarman S. (2010). The Effects of Online User Reviews on Movie Box Office Performance: Accounting for Sequential Rollout and Aggregation Across Local Markets. Marketing Science,29(5), 944-957.
Chen, Y., Wang, Q., & Xie J. (2011). Online Social Interactions: A Natural Experiment on Word of Mouth Versus Observational Learning. Journal of Marketing Research,48(2), 238-254.
Chen, Y. L., Tang, K., Wu, C. C., & Jheng, R. Y. (2014). Predicting the influence of users’posted information for eWOM advertising in social networks. Electronic Commerce Research and Applications, 13(6), 431-439.
Clemons, E. K., Gao, G. G., & Hitt, L. M. (2006). When Online Reviews Meet Hyperdifferentiation:A Study of the Craft Beer Industry. Journal of Management Information Systems, 23(2), 149-71
Coleman, M., & Liau, T. L. (1975). A computer readability formula designed for machine scoring. Journal of Applied Psychology, 60(2), 283-284.
Cui, G., Lui, H.K., & Guo, X. (2012). The effect of online consumer reviews on new product sales. International Journal of Electronic Commerce, 17(1), 39-58.
Davis, A.. & Khazanchi, D. (2007). The Influence of Online Word of Mouth on Product Sales in Retail e-Commerce: An Empirical Investigation. AMCIS.
Davis, A., & Khazanchi, D.(2008). An empirical study of online word of mouth as a predictor for multi-product category e-commerce sales. Electronic Markets,. 18(2), 130-141.
Dellarocas, C., Awad, N. F., & Zhang, X. (2004). Exploring the Value of Online Reviews to Organizations: Implications for Revenue Forecasting and Planning. ICIS.
Dellarocas, C.; Zhang, X.M., & Awad, N.F. (2007). Exploring the value of online product reviews in forecasting sales: The case of motion pictures. Journal of Interactive Marketing, 21(4), 23-45.
Duan, W., Gu, B., & Whinston, A. B. (2005). Do online reviews matter? - an empirical investigation of panel data. Decision Support Systems, 45, 1007-1016.
Feng, J., & Papatla, P. (2012). Is online word of mouth higher for new models or redesigns? An investigation of the automobile industry. Journal of Interactive Marketing, 26 (2), 92-101.
Floyd, K., Freling, R., Alhoqail, S., Cho, H.Y., & Freling, T. (2014). How online product reviews affect retail sales:A meta-analysis. Journal of Retailing, 90(2), 217-232.
Gaskin, J., & Lowry, P. (2014). Partial Least Squares (PLS) Structural Equation Modeling (SEM) for Building and Testing Behavioral Causal Theory: When to Choose It and How to Use It. IEEE Transactions on Professional Communication, 57, 123-146.
Gelb, B. D., & Sundaram, S. (2002). Adapting to word of mouse. Business Horizons, 45(4), 21-25.
Ghose, A., & Ipeirotis, P.G. (2011) Estimating the helpfulness and economic impact of product reviews: Mining text and reviewer characteristics. IEEE Transactions on Knowledge and Data Engineering, 23(10), 1498-1512.
Godes, D., & Mayzlin, D. (2004). Using online conversations to study word-of-mouth communication. Marketing Science, 23(4), 545-560.
Godbole, N., Srinivasaiah, M., & Skiena, S. (2007). Large-Scale Sentiment Analysis for News and Blogs. ICWSM, 7(21), 219-222.
Henning-Thurau, T., & Walsh, G. (2003). Electronic Word of Mouth: Motives for and Consequences of Reading Customer Articulations on the Internet. International Journal of Electronic Commerce, 8(2), 51-74.
Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic word-of-mouth via consumer-opinion platforms: What motivates consumers to articulate themselves on the internet? Journal of Interactive Marketing, 18(1), 38-53.
Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediatedenvironments: Conceptual foundations. Journal of Marketing, 60(3),50-68.
Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. 168-177.
Hu, N.; Liu, L., & Zhang, J. (2008). Do online Reviews Affect Product Sales? The Role of Reviewer Characteristics and Temporal Effects. Information Technology and Management, 9 (3), 201-214.
Huang, A. H., Chen, K., Yen, D. C., & Tran, T.P. (2015). A study of factors that contribute to online review helpfulness. Computers in Human Behavior, 48, 17-27
Jabr, W., & Eric, Z. (2013). Know Yourself and Know Your Enemy: An Analysis of Firm Recommendations and Consumer Reviews in a Competitive Environment. MIS Quarterly, 38. 634-654.
Kamins, M. A., & Assael, H. (1987). Two-sided versus one-sided appeals: A cognitive perspective on argumentation, source derogation, and the effect of disconfirming trial on belief change. Journal of Marketing Research, 24(1).
Kolter, P., & Armstrong, G. (1994), Principles of Marketing , 6th Ed., NJ: Prentice-Hall.
Kotler, P., & Keller, K. L. (2008), Marketing Management, 13th ed., NJ:Prentice-Hall Inc.
Lascu, D. N., Bearden, W. O., & Rose, R. L. (1995). Norm extremity and interpersonal influences on consumer conformity.Journal of Business Research, 32(3), 201-212.
Lee, C. M., Narayanan, S. S., & Pieraccini, R. (2002). Combining acoustic and language information for emotion recognition. INTERSPEECH.
Li, X., Wu, C., & Mai, F. (2019). The effect of online reviews on product sales: A joint sentiment-topic analysis. Information and Management, 56(2), 172-184.
Liang, T. P., Li, X., Yang, C. T., & Wang, M. (2015). What in consumer reviews affects the sales of mobile apps: A multifacet sentiment analysis approach. International. Journal of Electronic Commerce, 20(2), 236‐260.
Liu, Y. (2006). Word of mouth for movies: Its dynamics and impact on box office revenue. Journal of Marketing, 70(3), 74.
Loraas, T. M., & Diaz, M. C. (2011). Learning New Technologies: The Effect of Ease of Learning. Journal of Information Systems, 25(2), 171-194.
Luan, J., Yao, Z., Zhao, F., & Liu, H. (2016). Search product and experience product online reviews: An eye-tracking study on consumers' review search behavior. Computers in Human Behavior, 65, 420-430.
Mahajan, V., & Wind, J. (2002). New product models: Practices, shortcomings and desired improvements. Journal of Product Innovation Management, 9, 128-139.
Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology:
Moe, W. W., & Trusov, M. (2011). The Value of Social Dynamics in Online Product Ratings Forums. Journal of Marketing Research,48(3), 444-456.
Moen, Ø., Havro, L. J., & Bjering, E. (2017). Online Consumers Reviews: Examining the Moderating Effects of Product Type and Product Popularity on the Review Impact on Sales. Cogent Business & Management, 4(1).
Mohammad, S. M. (2012). Emotional Tweets. In Proceedings of the First Joint Conference on Lexical and Computational Semantics (*SEM), 246-255.
Mohammad, S. M. & Turney, P. D. (2013). Crowdsourcing a Word-Emotion Association Lexicon. 29, 436-465
Mohammad, S. M. (2018). Obtaining Reliable Human Ratings of Valence, Arousal, and Dominance for 20,000 English Words. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 174-184.
Mudambi, S. M., & Schuff, D. (2010). What Makes a Helpful Online Review? A Study of Customer Reviews on Amazon.com. MIS Quarterly, 34(1), 185-200.
Nelson, P. (1970). Information and consumer behavior. Journal of political economy, 78(20), 311-329.
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1-2), 1-135.
Park, D. H., & Lee, J.. (2007). The Effect of On-line Consumer Reviews on Consumer Purchasing Intention: The Moderating Role of Involvement. Electronic Commerce Research and Applications, 11(4), 125-148.
Park, D. H., & Lee, J. (2008). eWOM overload and its effect on consumer behavioral intention depending on consumer involvement. Electronic Commerce Research and Applications, 7, 386-98.
Paternoster, R., Brame, R., Mazerolle, P., & Piquero, A. (1998). Using the correct statistical test for the equality of regression coefficients. Criminology, 36(4), 859-866.
Petty, R. P., Cacioppo, J. T., & Goldman, R. (1981). Personal Involvement as a Determinant of Argument-Based Persuasion. Journal of Personality and Social Psychology, 41(5), 847-855.
Petty, R. E., & John T. C. (1986). The elaboration likelihood model of persuasion. Experimental Social Psychology, 19, 123-205.
Richardson, P. S., Dick, A. S., & Jain, A. K. (1994). Extrinsic and Intrinsic Cue Effects on Perceptions of Store Brand Quality. Journal of Marketing, 58(4), 28-36.
Ridings, C. M., Gefen, D., & Arinze, B. (2002). Some antecedents and effects of trust in virtual communities. Journal of Strategic Information Systems, 11, 271-295.
Roy, G., Datta, B., & Basu, R. (2017). Effect of eWOM Valence on Online Retail Sales. Global Business Review, 18(1), 198-209.
Rucker, D. D., Tormala, Z. L., Petty, R.E., & Brinol, P. (2014). Consumer conviction and commitment: An appraisal-based framework for attitude certainty. Journal of Consumer Psychology 24(1), 119-136
Russell, J. A. (1980). A circumplex model of affect. Jounal of Personality and Social Psychology, 39(6), 1171-1178.
Schneider, M. J., & Gupta, S. (2016). Forecasting sales of new and existing products using consumer reviews: A random projections approach. International Journal of Forecasting, 32, 243-256.
Siering, M., & Muntermann, J. (2013). Credence Goods and Online Product Reviews: An Exploration of the Product Type Concept in the Social Commerce Era. AMCIS.
Silverman, G. (2001). The power of word of mouth. Direct Marketing, 64 (5), 47-52.
Shi, M. (2003). Social Network-Based Discriminatory Pricing Strategy, Marketing Letters, 14(4), 239-256.
Silge, J., & Robinson, D. (2017). Text Mining with R: A Tidy Approach. 1st ed. O’Reilly Media, Inc.
Stewart, D. W., Hickson, G. B., Ratneshwar, S., Pechmann, C., & Altemeier, W. (1985). Information Search and Decision Strategies among Health Care Consumers. Advances in Consumer Research 12(1), 252-257.
Stafford, M. R., & Day, E. (1995). Retail services advertising: the effects of appeal,medium, and service. Journal of Advertising, 26(1), 57-71.
Sun, Y. C., & Wu, S. C. (2008). The effect of emotional state on waiting in decision making. Social Behavior and Personality, 36(5), 591-602.
Tang, T., Fang, E., & Wang, F. (2014). Is neutral really neutral? The effects of neutral user-generated content on product sales. Journal of Marketing, 78(4), 41–58.
Tax, S.S., Chandrashekaran, M., & Christiansen, T. (1993). Word-of- Mouth in Consumer Decision- Making, an Agenda for Research. Journal of Customer Satisfaction Dissatisfaction & Complaining Behaviour, 6, 75-80.
Voss, K.E., Spangenberg, E.R., & Grohmann, B. (2003). Measuring the hedonic and utilitarian dimensions of consumer attitude. Journal of Marketing Research, 40(3), 310-320.
Warriner, A. B., Kuperman, V., & Brysbaert, M. (2013). Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior research methods, 45(4), 1191-1207.
Wells, J., Valacich, J., & Hess, T. (2011). What Signal Are You Sending? How Website Quality Influences Perceptions of Product Quality and Purchase Intentions. MIS Quarterly, 35(2), 373-396.
Westbrook, R. A. (1987). Product/Consumption-Based Affective Responses and Postpurchase Processes, Journal of Marketing Research, 24, 258-270.
Woodworth, R. S. (1938). Experimental psychology. New York: Holt.
Wood, W., Kallgren, C. A., & Preisler, R. M. (1985). Access to attitude-relevant information in memory as a determinant of persuasion: The role of message attributes. Journal of Experimental Social Psychology, 21(1), 73-85.
Yang M., & Yan, X.(2012). Research on Utility Analysis of Online Commodity Reviews[J]. Journal of Management Science, 15(5), 65-75.
Yeh, J., Hsiao, K., & Yang, W. (2012). A study of purchasing behavior in Taiwan's online auction websites: Effects of uncertainty and gender differences. Internet Research, 22, 98-115.
Pan, Y., & Zhang, J. Q. (2011), Born Unequal: A Study of the Helpfulness of User-Generated Product Reviews, Journal of Retailing, 87(4), 598-612.
Zeithaml, V. (1988). Consumer Perceptions of Price, Quality and Value: A Means-End Model and Synthesis of Evidence. Journal of Marketing, 52(3), 2-22.
Zhang, K. Z. K., Zhao, S.J., Cheung, C.M.K., & Lee. M.K.O. (2014). Examining the influence of online reviews on consumers’ decision-making: A heuristic–systematic model. Decision Support Systems 67, 78-89.
Zhu, F., & Zhang, X. (2006). The Influence of Online Consumer Reviews on the Demand for Experience Goods:The Case of Video Games. ICIS.
呂玉華 (1990)。產品特質、訊息類型與企業行銷策略關係之研究。國立政治大學,臺北市。
李慶堂 (2014)。Text Mining技術淺談。國立臺灣大學計算機及資訊網路中心,電子報,第0031期。
林彣珊、唐嘉鴻 (2010)。網路口碑說服效果之研究。行銷評論,第 7 卷,第 2 期,頁 187-208。
林建煌 (2007)。消費者行為概論,初版,台北:華泰文化。
黃麗霞、張重昭 (2003)。訊息來源、正面訊息與市場行家特質對網路訊息傳播之影響。電子商務研究,第 1 卷,第 1 期,頁 25-40。
黃俊堯 & 柳秉佑 (2016)。消費者線上口碑與評論研究:國內外相關文獻回顧與討論。 臺大管理論叢 , 26(3), 215-256。
楊欽琮 (2013)。網路口碑對行動應用軟體銷售排名之影響—以Apple App Store 之意見分析為例。國立中山大學。高雄市。
楊德倫 (2014)。文字探勘之前處理與TF-IDF介紹。國立臺灣大學計算機及資訊網路中心,電子報,第0031期。
熊耿得 (2017)。以推敲可能性模式探討影響評論幫助性之因素,國立政治大學,臺北市。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code