Responsive image
博碩士論文 etd-0806116-214425 詳細資訊
Title page for etd-0806116-214425
論文名稱
Title
太陽光電系統中最大功率追蹤法之分析與比較
Comparative Analysis of Maximum Power Point Tracking Techniques for Photovoltaic Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-08-31
繳交日期
Date of Submission
2016-09-07
關鍵字
Keywords
最大功率追蹤、擾動觀察法、粒子群演算法、太陽光伏發電
Photovoltaic Generation, Maximum Power Point Tracking, Particle Swarm Optimization, Perturb and Observe
統計
Statistics
本論文已被瀏覽 5952 次,被下載 706
The thesis/dissertation has been browsed 5952 times, has been downloaded 706 times.
中文摘要
摘要
 太陽光伏發電(Photovoltaic Generation, PVG)輸出之電壓與電流隨著環境條件變動而改變。為了使太陽光伏發電在不同環境條件下皆能維持最大輸出,最大功率追蹤(Maximum Power Point Tracking, MPPT)技術一直以來都是太陽能產業重點研究課題。時至今日已有許多最大功率追蹤技術被提出。
  本文將兩種最常見的最大功率追蹤技術擾動觀察法(Perturb and Observe, P&O)與粒子群演算法(Particle Swarm Optimization, PSO)做出比較與分析。將中央氣象局所提供之一整日之照度及溫度資料利用Matrix Laboratory (MATLAB) 軟體分別模擬一塊額定輸出功率為200W之太陽能板在採取擾動觀察法與粒子群演算法時之差異,並比對兩者整日運作時在暫態追蹤時間與功率上的差異,並比較兩者間因為在暫態追蹤時所損失的能量(unharvested energy)。
Abstract
ABSTRACT
Maximum Power Point Tracking (MPPT) plays an important role in Photovoltaic Generation (PVG) systems because it maximizes the power output from a PVG system. Thus, an MPPT can minimize the overall system cost. MPPT operates a PVG system under different solar irradiances and temperatures. Many such algorithms have been proposed. This thesis provides a comparison between Perturb and Observe (P&O) method, and Particle Swarm Optimization (PSO) method with the weather data from Taiwan Weather Bureau. Matrix Laboratory (MATLAB) programming by using real data is implemented for a PVG system with a rated output of 200 W energy to obtain the curve performance and the unharvest energy for different the MPPT algorithms.
目次 Table of Contents
TABLE OF CONTENTS
ACKNOWLEDGEMENT ii
摘要 iii
TABLE OF CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES ix
ACRONYMS AND ABBREVIATIONS x
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Study Objective 3
1.3 Thesis Outline 3
CHAPTER 2 PHOTOVOLTAIC GENERATION 5
2.1 Photovoltaic Introduction 5
2.1.1 Silicon 5
2.1.2 P-N Junction 7
2.1.3The Electric Current 8
2.2 Photovoltaic Classification 9
2.2.1 Non-Organic and Organic Cell 9
2.2.2 Silicon and Non-Silicon Cell 10
2.3 Photovoltaic Electrical Characteristic 12
CHAPTER 3 MAXIMUM POWER POINT TRACKING TECHNOLOGY OVERVIEW 19
3.1 Maximum Power Point Technology 19
3.1.1 Perturbation and Observe (P & O) 19
3.1.2 Feedback Voltage 23
3.1.3 Feedback Power 24
3.1.4 Incremental Conductance (IncCond) 24
3.1.5 Particle Swarm Opimization (PSO) 28
3.1.6 Parabolic Prediction 32
3.1.7 Fuzzy Logic Control (FLC) 33
3.1.8 Neural Network (NN) 36
3.1.9 Fractional Open Circuit Voltage (FOCV) 39
3.1.10 Fractional Short Circuit Current (FSCI) 39
3.1.11 Adaptive Neuro Fuzzy Inference System (ANFIS) 40
3.2 Comparison of Various Algorithm 42
CHAPTER 4 MAXIMUM POWER POINT TRACKING SOFTWARE ARCHITECTURE AND TECHNICAL ANALYSIS 45
4.1 Solar Irradiance Characteristic Simulation Analysis 45
4.2 Software Program Process 46
CHAPTER 5 SIMULATION TEST RESULTS 50
5.1 Simulation Specification 50
5.2 Simulation Results of Comparison Methods 51
5.2.1 Comparison Single Irradiance Simulation Result 52
5.2.2 Comparison Various Irradiances Simulation Result 54
5.2.3 Simulation Results for Whole Day of Comparison Methods 60
CHAPTER 6 CONCLUSION AND FUTURE RESEARCH 63
6.1 Conclusion 63
6.2 Future Research 65
REFERENCES 66
參考文獻 References
REFERENCES
[1] “Global Trends in Renewable Energy Investment 2016,” Bloomberg, New Energy Finance.
[2] K. Zweibel, P. Hersch, et al., “Basic Photovoltaic Principles and Methods,” Solar Energy Research Institute, United State of America, 1984.
[3] Student’s Corner, Photovoltaic (Solar) Cells, working principal and applications,
http://www.ooshutup.com/photovoltaic-solar-cells-working-principal-applications-uses/
[4] “Solar Photovoltaic,” Leading The Energy Transition Fact book, SBC Energy Institute, September 2013.
[5] A. M. Bagher, “Comparison of Organic Solar Cells and Inorganic Solar Cells,” International Journal of Renewable and Sustainable Energy, 3(3): 53-58, 2014.
[6] K. Zweibel, “Harnessing Solar Power,” The Photovoltaic Challenge, New York and London, 1990.
[7] F. Dimroth, M. Grave, P. Beutel, et al., “Wafer Bonded Four-Junction GaInP/GaAs//GaInAsP/GaInAs Concentrator Solar Cells with 44.7% Efficiency,” Progress in Photovoltaics: Research and Applications, Volume 22, Issue 3, pp. 277-282, March 2014.
[8] K. H. Hussein, I. Muta, T. Hoshino, et al., “Maximum Photovoltaic Power Tracking: An Algorithm for Rapidly Changing Atmospheric Conditions,” IEE Proc.-Gener. Transm. Distrib., Vol. 142, No. 1, January 1995.
[9] R. Suryavanshi, D. R. Joshi, and S. H. Jangamshetti, “PSO and P&O Based MPPT Technique for SPV Panel Under Varying Atmospheric Conditions,” International Journal of Engineering and Innovative Technology (IJEIT), Volume 1, Issue 3, Mach 2012.
[10] S. Nemsi, L. Barazane, S. Diaf, et al., “Comparative Study Between Two Maximum Power Point Tracking (MPPT) Techniques for Photovoltaic System,” Revue des Energies Rnouvelables Vol. 16 Nº4 (2013) 773-782.
[11] D. P. Hohm and M. E. Ropp, “Comparative Study of Maximum Power Point Tracking Algorithms,” Prog. Photovoltaic: Res. Appl. 2003.
[12] B. Subudhi and R. Pradhan, “A Comparative Study on Maximum Power Point Tracking Techniques for Photovoltaic Power Systems,” IEEE Transactions on Sustainable Energy, Vol. 4, No. 1, January 2013.
[13] V. Salas, E. Olias, A. Barrado, et al., “Review of The Maximum Power Point Tracking Algorithms for Stand-Alone Photovoltaic Systems,” Elsevier, Solar Energy Materials & Solar Cells, 2006.
[14] M. I. Hamid, M. Anwari, and Taufik, “Comparison of Current Control Methods on Carrier Based VSI-PWM Inverter Drives from Line Power Quality Aspect,” TELKOMNIKA Vol. 6 No. 2, 93-100, ISSN: 1693-6930, August 2008.
[15] M. A. G. de Brito, L. Galotto, J. L. P. Sampaio, et al., “Evaluation of The Main MPPT Techniques for Photovoltaic Applications,” IEEE Transactions on Industrial Electronics, Vol. 60, No. 3. March 2013.
[16] T. Esram and P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Transactions on Energy Conversion, Vol. 22, No. 2, June 2007.
[17] “Particle Swarm Optimization,” LIACS Natural Computing Group Leiden University.
[18] S. Abraham, S. Sanyal, et al., “Particle Swarm Optimization Based Diophantine Equation Solver,” International Journal Bioinspired Computing, 2010.
[19] K. T. K. Teo, P. Y. Lim, B. L. Chua, et al., “Maximum Power Point Tracking of Partially Shaded Photovoltaic Arrays Using Particle Swarm Optimization,” 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology, 2014.
[20] F. S. Pai, R.M. Chao, et al., “Performance Evaluation of Parabolic Prediction to Maximum Power Point Tracking for PV Array,” IEEE Transactions on Sustainable Energy, Vol. 2, No. 1, January 2011.
[21] M. Veerachary, T. Senjyu, K. Uezato, “Neural Network Based Maximum Power Point Tracking of Coupled Inductor Interleaved Boost Converter Supplied PV System Using Fuzzy Controller,” IEEE Trans. Ind. Electron, Vol. 50, No. 4, pp. 749-758, August 2003.
[22] A. M. A. Mahmoud, H. M. Mashaly, S. A. Kandil, et al., “Fuzzy Logic Implementation for Photovoltaic Maximum Power Tracking,” in Proc. 9th IEEE Int. Workshop Robot Human Interactive Commun., pp. 155-160, 2000.
[23] N. Patcharaprakiti, S. Premrudeeppreechacharn, “ Maximum Power Point Tracking Using Adaptive Fuzzy Logic Control for Grid Connected Photovoltaic System,” IEEE Power Eng. Soc. Winter Meet., pp. 372-377, 2002.
[24] C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller-Part I,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 20, No. 2, March/April, 1990.
[25] P. J. Brockwell and R. A. Davis, “Time series: Theory and Methods,” Springer series in statistics, 2nd edition, 2006.
[26] J. W. Baek, J. S. Ko, J. S. Choi, et al., “Maximum Power Point Tracking Using Neural Network,” IEEE.
[27] A. F. Murtaza, H.A. Sher, M. Chiaberge, et al., “Comparative Analysis of Maximum Power Point Tracking Techniques for PV Applications,” IEEE, 978-1-4799-3043-2/13/$31.00, 2013.
[28] T. Esram and P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Transactions on Energy Conversion, Vol. 22, No. 2, June 2007.
[29] A. Arora and P. Gaur, “Comparison of ANN and ANFIS Based MPPT Controller for Grid Connected PV Systems,” IEEE INDICON 1570187041, 2015.
[30] B. Tarek, D. Said, and M. E. H. Benbouzid, “Maximum Power Point Control for Photovoltaic System Using Adaptive Neuro-Fuzzy (ANFIS),” 8th International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER), 2013.
[31] D. Mlakic and S. Nikolovski, “ANFIS as a Method for Determinating MPPT in The Photovoltaic System Simulated in Matlab/Simulink,” MIPRO 2016, Opatija, Croatia, May 30-June 3 2016.
[32] Z. M. Salameh, B. S. Borowy, and A. R. A. Amin, “Photovoltaic module-Site Matching Based on The Capacity Factors,” IEEE Trans. Energy Corners., Vol. 10, No. 2, pp. 362-332, June 1995.
[33] Y. M. Atwa, E. F. El- Saadany, M. M. Salama, et al., “Optimal Renewable Resources Mix for Distribution System Energy Loss Minimization,” IEEE Trans. Power Syst., Vol. 25, No. 1, pp. 360-370, Feb. 2010.
[34] J. H. Teng, S. W. Luan, D. J. Lee, et al., “ Optimal Charging/Discharging Scheduling of Battery Storage Systems for Distribution Systems Interconnected With Sizeable PV Generation Systems,” IEEE Transaction on Power Systems, Vol. 28, No. 2, May. 2013
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code