Responsive image
博碩士論文 etd-0801116-154952 詳細資訊
Title page for etd-0801116-154952
論文名稱
Title
海洋真菌Aspergillus terreus之化學成分及其活性研究
Studies on the Chemical Components of Marine-Derived Fungus, Aspergillus terreus and Their Biological Activities
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
167
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-15
繳交日期
Date of Submission
2016-09-05
關鍵字
Keywords
土麴黴 (Aspegillus terreus)、鮑氏不動桿菌、螢光素脢活性分析、螯合鐵檢測、MTS細胞生存能力檢測、抗微生物活性
luciferase assay activity, Acinetobacter baumannii, Anti-microbial activity, Aspegillus terreus, MTS cell viability effect, Iron chelating effects
統計
Statistics
本論文已被瀏覽 5802 次,被下載 37
The thesis/dissertation has been browsed 5802 times, has been downloaded 37 times.
中文摘要
摘要

海洋微生物在生物活性化學支架被視作最有潛力的使用品之ㄧ。為找尋來自海洋環境的抗微生物次生代謝產物,本研究從海綿 ( genus : Haliclona ) 中分離出ㄧ種海洋真菌 Aspergillus terreus (MB14-HBr)。於2014年五月,收集自台灣東沙環礁群島。藉由乙酸乙酯 ( EtOAc ),由實驗室自行培養出的真菌,萃取出代謝物。由抗微生物檢測初步結果表示,以EtOAc萃取出的MB14-HBr能分別地抑制細菌病原體鮑氏不動桿菌 (Acinetobacter baumannii ) 和白色念珠菌 (Candida albicans)。有趣的是,本研究還發現以EtOAc粗萃取時,還有其它的純物質, 包含 : dihydrogeodin (A-01), butryolactone II (A-02) , butryolactone I (A-06), Terrelumamide A (A- 11),另, Methyl 3,4,5-trimethoxy-2-(2-nicotinamido)benzamido) benzoate (A-15) 和鐵螯合於色天青S (Chrome-azurol S, CAS)檢測裡。由於鐵載體有抓住天然鐵的特性,讓其可應用於癌症化療。鮑氏不動桿菌 (Acinetobacter baumannii ) ,一種伺機式感染人類的病原體,容易受到臨床經常使用的抗生素而突變,也常為院內感染的元凶。而且,三種化合物,butryolactone II (A-02), butryolactone I (A-06) 和 methyl 3, 5 dichloro-asterric acid (A-03) 在螢光素脢活性分析,表明這些化合物可能阻止了(TGF)-β誘導的轉錄反應。本研究的目的是在分叢菌株 Aspergillus terreus 中分離出生物活性物。為了分離的生物活性成分,將EtOAc萃取物進行Sephadex LH-20 管柱層析法和逆向高效液相層析法。其結果是,共15種已知化合物從此真菌提取物中分離,包含 dihydrogeodin (A -01), butryolactone (A-02), methyl 3, 5 dichloro-asterric acid (A-03), 3R-methyl-6-hydroxy-8-methoxy isocoumarin (A-04), terretonin C (A-05), butryolactone I (A-06), geodin hydrate (A-07), 6,7-dimethoxy-4-hydroxymellein (A-08), butryolactone V (A-09), asterric acid (A-10), terrein (A-12) asterrelenin (A-13), terretonin (A-14) and methyl 3,4,5-trimethoxy-2-(2-nicotinamido)benzamido)benzoate (A-15). 此外,這些被分離出的結構,透過1D和2D NMR被闡述在本研究中。

關鍵字 : 土麴黴 (Aspegillus terreus),抗微生物活性,鮑氏不動桿菌,螢光素脢活性分析,MTS細胞生存能力檢測,螯合鐵檢測
Abstract
Abstract

Marine microbes are regarded as one of the worthiest treasures for bioactive chemical Scaffolds. To search for anti-microbial secondary metabolites from marine environment, we isolated a marine-derived fungus Aspergillus terreus (MB14-HBr) from the sponge Haliclona species, Collected from Dongsha Atoll, Taiwan in May 2014. The isolated fungus was further cultured in laboratory and fungal metabolites were extracted by ethyl acetate (EtOAc). Preliminary anti-microbial assay indicated that EtOAc extract of MB14-HBr could inhibit the bacterial pathogen Acinetobacter baumannii and the fungal one Candida albicans, respectively. Besides interestingly, we also discovered that the crude EtOAc extract, fraction as well as pure compounds including dihydrogeodin (A-01), butryolactone II (A-02), Butryolactone I (A-06), Terrelumamide A (A-11) and Methyl 3,4,5-trimethoxy-2-(2-nicotinamido)benzamido)benzoate (A-15) exhibited siderophore-like (iron-chelating) effects in Chrome-azurol S (CAS) assay. Due to natural iron clutching properties of sidherophores, they have impending applications in cancer chemotherapy. Acinetobacter baumannii is an opportunistic human pathogen which is easy mutant to be several clinical antibiotics and very famous due to cause of nosocomial infection in human. Moreover, three compounds, butryolactone II (A-02), Butryolactone I (A-06) and methyl 3, 5 dichloro-asterric acid (A-03) showed activity in luciferase assay, suggested that these components might block Transforming Growth Factor (TGF)-β-induced transcriptional responses. The objective of this study is to isolate the bioactive components from the strain Aspergillus terreus. In order to isolate bioactive components, the EtOAc extract was subjected to Sephadex LH-20 column chromatography and reversed phase high performance liquid chromatography. As a result, a total of fifteen known compounds have been isolated from this fungal extract, including dihydrogeodin (A-01) butryolactoneII (A-02), methyl 3,5 dichloro-asterrric acid (A-03), 3R-methyl-6-hydroxy-8-methoxy isocoumarin (A-04), terretonin C (A-05), butryolactone I (A-06), geodin hydrate (A-07), 6,7-dimethoxy-4-hydroxymellein (A-08), butryolactone V (A-09), asterric acid (A-10), terrein (A-12) asterrelenin (A-13), terretonin (A-14) and methyl 3,4,5-trimethoxy-2-(2-nicotinamido)benzamido)benzoate (A-15). Moreover, we isolated one are peptide named terrelumamide-A (A-11). The structures of these isolates were elucidated on the basis of 1D and 2D NMR, Mass spectrometry, as well as literature data.
Key words: Aspegillus terreus, Anti-microbial activity, Acinetobacter baumannii, luciferase assay activity, MTS cell viability effect, Iron chelating effects.
目次 Table of Contents
Content
Varification letter i
Acknowledgement ii
Abstract iii
List of figures ix
List of tables xii
List of schemes xii
List of abbreviations and symbols xiii
Chapter - 1 1
Introduction 1
1.1 Natural products in history 1
1.2 Historically important natural products 2
1.3 Natural products from fungi 4
1.4 Secondary metabolites and antibiotics 5
1.4-1 Antibiotics history 6
1.4-2 Antibiotics definition 6
1.4-3 Antibiotics function 7
1-5. Litreture review of Aspergillus terreus 8
1-5-1. Butryolactone types compounds from Aspergillus terreus 9
1-5-3. Statin types compounds from Aspergillus terreus 11
1-5-4. Sesterterpenoid types compounds from Aspergillus terreus 11
1-5-4. Asterric Acid types compounds from Aspergillus terreus 12
1-5-5. Quinone types compounds from Aspergillus terreus 12
1-5-6. Asterriquinone types compounds from Aspergillus terreus 13
1-5-8. Alkaloid types compounds from Aspergillus terreus 15
1-5-11. Meroterpenoid types compounds from Aspergillus terreus 17
1-5-12. Lumazine peptides 18
1-5-13. Others 19
1-6. Biological activities – 19
Chapter - 2 24
Materials and Methods 24
2.1 Experimental methods 24
2.2 Marine fungus 26
2.2.1. Collection and purification 26
2.3 Initial purification of sponge (Haliclona species) 29
2.4 Extraction, isolation and purification 30
2.5 Marine agar 34
2.8 Other media 36
2.8-1 Salts seawater 36
2.8-2 MSWYE (PYE) 37
2.8-3 Potato dextrose agar (PDA) 37
2.8-4 CAMHB 37
2.9 Instruments 38
2.9-1 Optical rotation spectrometer: 38
2.9-2 UV-visible spectrometer (UV-Vis): 38
2.9-3 Infrared spectrometer (IR) 38
2.9-4 Nuclear magnetic resonance spectrometer (NMR) 38
2.9-5. Mass spectrometer (MS) 39
2.9-6 Column chromatography 39
2.9-7 Solvents 39
2.10 Bioassay methods 39
2.10-1 Paper disc agar diffusion assay 39
2.10-2 Punching-plate assay 40
2.10-3 Chrome azurol S (CAS) 40
2.10-4 Minimum inhibitory concentrations assay 41
Chapter – 3 47
Results and Discussion 47
3.1 Dihydrogeodin (A-01) 47
3.2 Butryolactone II (A-02) 54
3.3 Methyl 3, 5 dichloro-asterrric acid (A-03) 60
3.4 3R-methyl-6-hydroxy-8-methoxy isocoumarin (A-04) 66
3.5 Terretonin C (A-05) 71
3.6 Butryolactone I (A-06) 76
3.7 Geodin hydrate (A-07) 82
3.8 6,7-dimethoxy-4-hydroxymellein (A-08) 88
3.9 Butryolactone V (A-09) 95
3.10 Asterric acid (A-10) 101
3.11 Terrelumamide-A (A-11) 106
3.12 Terrein (A-12) 113
3.13 Asterrelenin (A-13) 118
3.14 Terretonin (A-14) 124
3.15 Methyl 3, 4, 5-trimethoxy-2-(2-nicotinamido)benzamido)benzoate (A-15) 130
Chapter 4 136
Biological activities 136
4.1 Disc diffusion assay 136
4.2 Chrome azurol S (CAS) assay 137
4.3 Luciferase activity assay 140
4.4 MTS cell viability assay 140
Chapter – 5 142
Conclusion 143
Chapter-6 144
References 144
參考文獻 References
Chapter-6
References
1. Mishra, B.B.; Tiwari, V.K. Natural products: An evolving role in future drug discovery. Eur. J. Med. Chem. 2011, 46, 4769–4807.
2. Cragg, G.M.; Newman, D.J. Biodiversity: A continuing source of novel drug leads. Pure Appl. Chem. 2005, 77, 7–24.
3. Butler, M.S. The role of natural product in chemistry in drug discovery. J. Nat. Prod. 2004, 67, 2141–2153Benowitz, S. As war on cancer hits 25-year mark, scientists see progress, challenges. Scientist 1996, 10, 1−7.
4. Der Marderosian, A.; Beutler, J.A. The Review of Natural Products, 2nd ed.; Facts and Comparisons; Seattle, WA, USA, 2002 pp. 13–43.
5. Aniszewski, T. Alkaloids—Secrets of Life. In Alkaloid Chemistry, Biological Significance, Applications and Ecological Role; Elsevier Science: Amsterdam, The Netherlands, 2007; p. 334.
6. Lorenzen, K.; Anke, T. Basidiomycetes as a source for new bioactive natural products.
Curr. Org. Chem. 1996, 2, 329–364.
7. Lorenzen, K.; Anke, T. Basidiomycetes as a source for new bioactive natural products.
Curr. Org. Chem. 1996, 2, 329–364.
8. Abraham, E.P.; Chain, E.; Fletcher, C.M. Further observations on penicillin. Lancet 1941, 16, 177–189.
9. Williams, J.D. β-lactamases and β-lactamase inhibitor. Int. J. Antimicrob. Agents 1999, 12 (Suppl. 1), S2–S7.
10. Zjawiony, J.K. Biologically active compounds from aphyllophorales (Polypore) fungi. J. Nat. Prod. 2004, 67, 300–310.
11. Alberts, A.W., J. Chen, G. Kuron, V. Hunt, et al. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. P Natl Acad Sci USA. 1980 77 p.3957-3961
12. Dewick, P.M. The mevalonate and methylerythritol phosphate pathway terpenoids and steroids, in Medicinal natural products: biosynthetic approach, John Wiley & Sons, Ltd. 2009, p.187-310.
13. Survase, S.A., L.D. Kagliwal, U.S. Annapure, and R.S. Singhal Cyclosporin A - a review on fermentative production, downstream processing and pharmacological applications. Biotechnol Adv. 2011, 29 p.418- 435.
14. Miller, E.L. the penicillins: a review and update. J Midwifery Wom Heal. 2002 4 p. 426-434.
15. Weiss, C. and T. Eisner Partnerships for value-added through bioprospecting. Technol Soc. 1998, 20 p .481−498.
16. Chin, Y. W.; Balunas, M. J.; Chai, H. B.; Kinghorn, A. D. Drug discovery from natural sources. Aaps Journal 2006, 8, E239−E253.
17. Haefner, B. Drugs from the deep: marine natural products as drug candidates. Drug Discovery Today 2003, 8, 536−544.
18. Huang, G. S.; Lopez-Barcons, L.; Freeze, B. S.; Smith, A. B.; Goldberg, G. L.; Horwitz, S. B.; McDaid, H. M. Potentiation of taxol efficacy and by discodermolide in ovarian carcinoma xenograft-bearing mice. Clin. Can. Res. 2006, 12, 298−304.
19. Davies, J., Are antibiotics naturally antibiotics? J. Ind. Microbiol. Biotechnol. 2006, 33, 496-469.
20. Waksman, S. A., What is an antibiotic or an antibiotic substance? Mycologia. 1947, 39, 565-569.
21. Boots, M. R., Antibiotics: An introduction. By Roland Reiner. Thieme-Stratton Inc., 381 Park Avenue South, New York, NY 10016. 1982. 172 pp. 12 × 19 cm. Price $9.95. J. Pharm. Sci. 1984, 73, 572-573.
22. Dias, D. A.; Urban, S.; Roessner, U., A Historical Overview of Natural Products in Drug Discovery. Metabolites. 2012, 2, 303-336.
23. Selwyn, S., Pioneer work on the ‘penicillin phenomenon’, 1870–1876. J. Antimicrob.Chemoth. 1979, 5, 249-255.
24. Cao, M.; Wang, T.; Ye, R.; Helmann, J. D., Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis W and M regulons. Mol. Microbiol. 2002, 45, 1267-1276.
25. Niu, X.; Dahse, H. M.; Menzel, K. D.; Lozach, O.; Walther, G; Meijer, L.; Grabley, S.; Sattler, I., Butyrolactone I derivatives from Aspergillus terreus carrying an unusual sulfate moiety. Journal of Natural Products 2008, 71, 689-692.
26. Rao, K. V.; Sadhukhan, A. K.; Veerender, M.; Ravikumar, V.; Mohan, E. V. S.; Dhanvantri, S. D., Butyrolactones from Aspergillus terreus. Chemical & Pharmaceutical Bulletin 2000, 48, 559-562.
27. Nitta, K.; Fujita, N.; Yoshimura, T.; Arai, K.; Yamamoto, Y., Metabolic products of Aspergillus terreus IX Biosynthesis of butyrolactone derivatives isolated from strains 1F0 8835 and 4100. Chemical & Pharmaceutical Bulletin 1983, 31, 1528-1533.
28. Ojima, N.; Takahashi, I.; Ogura, K.; Seto, S., New metabolites from Aspergillus terreus related to the biosynthesis of aspulvinones. Tetrahedron Letters 1976, 1013-1014.
29. Parvatkar, R. R.; Tripathi, A.; Naik C. G, Aspernolides A and B, butenolides from a marine-derived fungus Aspergillus terreus. Phytochemistry 2009, 70, 128-132.
30. Ojima, N.; Takenaka, S.; Seto, S., Structures of pulvinone derivatives from Aspergillus terreus. Phytochemistry 1975, 14, 573-576.
31. Noriki, K.; Keiichi, N.; Yoshiaki, S.; Yasuhisa, T.; Yuzuru, Y., Studies on the metabolic products of Aspergillus terreus III Metabolites of the strain TFO 8835. (1). Chemical & Pharmaceutical Bulletin 1977, 25, 2593-2601.
32. Golding, B. T.; Rickards, R. W.; Vanek, Z., New metabolites of Aspergillus terreus. 3-Hydroxy-2,5-bis(p-hydroxyphenyl)penta-2,4-dien-4-olide and derivatives. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1972-1999) 1975, 1961-1963.
33. Vertesy, L.; Burger, H. J.; Kenja, J.; Knauf, M.; Kogler, H.; Hammann, P., Kodaistatins, novel inhibitors of glucose-6-phosphate translocase T1 from Aspergillus terreus Thom DSM 11247. Isolation and structural elucidation. Journal of Antibiotics 2000, 53, 677-686.
34. Hendrickson, L., Davis, R. C.; Roach, C.; Nguyen, K. D.; Aldrich, T.; Mcada, C. P.; Reeves, D. C.; chemistry and biology 1999, 6. Lovastatin biosynthesis in Aspergillus terreus:

35. Li, G. Y.; Li, B. G.; Yang, T.; Yin, J. H.; Qi, H. Y.; Liu, G Y.; Zhang, G. L., Sesterterpenoids, terretonins A-D, and an alkaloid, asterrelenin, from Aspergillus terreus. Journal of Natural Products 2005, 68, 1243-1246.
36. McIntyre, C. R.; Scott, F. E.; Simpson, T. J.; Trimble, L. A.; Vederas, J. C., Application of stable isotope labeling methodology to the biosynthesis of the mycotoxin, terretonin, by Aspergillus terreus: incorporation of carbon-13-labeled acetates and methionine, deuterium- and carbon-13/oxygen-18-labeled ethyl 3,5-dimethylorsellinate and oxygen-18 gas. Tetrahedron 1989, 45, 2307-2321.
37. Gresa, M. P. L.; Cabedo, N.; Mas, M. C. G.; Ciavatta, M. L.; Avila, C.; Primo, J., Terretonin E and F, Inhibitors of mitochondrial respiratory chain from marine-derived fungus Aspergillus terreus, Journal of Natural Products 2009, 72, 1348-1351.
38. Curtis, R. F.; Hassall, C. H.; Jones, D. W.; Williams, T. W., Biosynthesis of phenols. Asterric acid, a metabolic product of Aspergillus terreus. Journal of the Chemical Society 1960, 4838-4842.
39. Inamori, Y.; Kato, Y.; Kubo, M.; Kamiki, T.; Takemoto, T.; Nomoto, K., Studies on metabolites produced by Aspergillus terreus var. aureus. I. Chemical structures and antimicrobial activities of metabolites isolated from culture broth. Chemical & Pharmaceutical Bulletin 1983, 31, 4543-4548.
40. Elsohly, H. N.; Slatkin, D. J., Metabolites of Aspergillus cervinus massee. Journal of Pharmaceutical Sciences 1974, 63, 1632-1633.
41. Kiriyama, N.; Higuchi, Y.; Yamamoto, Y., Studies on the metabolic products of Aspergillus terreus. II. Structure and biosynthesis of the metabolites of the strain ATCC 12238. Chemical & Pharmaceutical Bulletin 1977, 25, 1265-1272
42. Kithsiri Wijeratne, E. M.; Turbyville Thomas, J.; Zhang, Z., Cytotoxic constituents of Aspergillus terreus from the rhizosphere of Opuntia versicolor of the Sonoran Desert. Journal of Natural Products 2003, 66, 1567-1573.
43. Arai, K.; Yamamoto, Y., Metabolic products of Aspergillus terreus. X. Biosynthesis of asterriquinones. Chemical & Pharmaceutical Bulletin 1990, 38, 2929-2932.
44. He, J.; Kithsiri Wijeratne, E. M.; Bashyal, B. P.; Zhan, J.; Gunatilaka, A. A. L., Cytotoxic and Other Metabolites of Aspergillus Inhabiting the Rhizosphere of Sonoran Desert Plants. Journal of Natural Products 2004, 67, 1985-1991.
45. Kaji, A.; Iwata, T.; Kiriyama, N.; Wakusawa, S.; Miyamoto, K., Four new metabolites of Aspergillus terreus. Chemical & Pharmaceutical Bulletin 1994, 42, 1682-1684.
46. Nakagawa, M.; Sakai, H.; Isogai, A.; Hirota, A., New sesquiterpenes from Aspergillus terreus Thom. Agricultural Biology and Chemistry 1984, 48, 2279-2283.
47. Hirota, A.; Nakagawa, M.; Sakai, H.; Isogai, A.; Furihata, K.; Seto, H., Studies on the biosynthesis of terrecyclic acid A. II. Confirmation of the cyclization mechanism and hydrogen shifts using [2-2H3]acetate and [2-13C2H3]acetate. Tetrahedron Letters 1985, 26, 3845-3848.
48. Garson, M. J.; Jenkins, S. M.; Staunton, J.; Chaloner, P. A., Isolation of some new 3,6-dialky1-1,4-dihydroxypiperazine-2,5-diones from Aspergillus terreus. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1972-1999) 1986, 901-903.
49. Gordon W. Kirby, D. J. R. a. W. M. S., Structure and synthesis of cis-3,6-dibenzy1-3,6-bis(methylthio)-piperazine-2,5-dione, a new metabolite of Aspergillus terreus. Journal of the Chemical Society 1983, 812.
50. Mammalian cell inhibitor produced by Aspergillus terreus 95 F-1 Tetrahedron Letters 1997, 38, 1223-1226.
51. Kuriyama, T.; Kakemoto, E.; Takahashi, N.; Imamura, K. I.; Oyama, K.; Suzuki, E.; Harimaya, K.; Yaguchi, T.; Ozoe, Y., Receptor assay-guided isolation of anti-gabaergic insecticidal alkaloids from a fungal culture. Journal of Agricultural and Food Chemistry 2004, 52, 3884-3887.
52. Lee, S. M.; Li, X. F.; Jiang, H.; Cheng, J. G; Seong, S.; Choi, H. D.; Son, B. W., Terreusinone, a novel UV-A protecting dipyrroloquinone from the marine algicolous fungus Aspergillus terreus. Tetrahedron Letters 2003, 44, 7707-7710.
53. Nomoto, K.; Mizukawa, K.; Kato, Y.; Kubo, M.; Kamiki, T.; Inamori, Y., Chemical structure of a new metabolite isolated from the mycelium of Aspergillus terreus var. aureus. Chemical & Pharmaceutical Bulletin 1984, 32, 4213-4216.
54. Curtis, R. F.; Hassall, C. H.; Jones, D. W.; Williams, T. W., Biosynthesis of phenols. Asterric acid, a metabolic product of Aspergillus terreus. Journal of the Chemical Society 1960, 4838-4842.
55. Haruhiro, F.; Hubert, F.; Burchard, F., Pilzinhaltsstoffe, 25 Biosynthese der Seco-anthrachinone Geodin and Dihydrogeodin aus Emodin. Chemische Berichte 1975, 108, 1224-1228.
56. Kim, W. G; Cho,
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code