Abstract |
The function $sin x$ as one of the six trigonometric functions is fundamental in nearly every branch of mathematics, and its applications. In this thesis, we study an integral equation related to that of $sin x$: $mbox{~for~}xin[-frac{hat{pi}_{p}}{2},~frac{hat{pi}_{p}}{2}] mbox{~and~} p>1$ $$x=int_0^{S_{p}(x)}(1-|t|^{p})^{-frac{1}{p}}dt.$$ Here $hat{pi}_{p}=frac{2pi}{psin(frac{pi}{p})}=2int_0^1(1-t^{p})^{-frac{1}{p}}dt.$ We find that the function $S_{p}(x)$ is well defined. Its properties are also similar to those of $sin x$ : differentiation, identities, periodicity, asymptotic expansions, $cdots$, etc. For example, we have $$|S_{p}(x)|^{p}+|S'_{p}(x)|^{p}=1mbox{~~and~~}frac{d}{dx}(|S'_{p}(x)|^{p-2}S'_{p}(x))=-(p-1)|S_{p}(x)|^{p-2}S_{p}(x).$$ We call $S_{p}(x)$ the generalized sine function. Similarly, we define the generalized cosine function $C_{p}(x)$ by $|x|=int_{C_{p}(x)}^{1}(1- t^{p})^{-frac{1}{p}}dt$ for $xin[-frac{hat{pi}_{p}}{2}$,~$frac{hat{pi}_{p}}{2}]$ and derive its properties. Thus we obtain two sets of trigonometric functions: egin{itemize} item[(i)]$~S_{p}(x),~ S'_{p}(x),~ T_{p}(x)=frac{S_{p}(x)}{S'_{p}(x)},~RT_{p}(x)=frac{S'_{p}(x)}{S_{p}(x)},~ SE_{p}(x)=frac{1}{S'_{p}(x)},~ RS_{p}(x)=frac{1}{S_{p}(x)}~;$ item[(ii)]$~C_{p}(x),~ C'_{p}(x),~RCT_{p}(x)=-frac{C'_{p}(x)}{C_{p}(x)},~ CT_{p}(x)=-frac{C_{p}(x)}{C'_{p}(x)},~RC_{p}(x)=frac{1}{C_{p}(x)},~ CS_{p}(x)=-frac{1}{C'_{p}(x)}mbox{~。~}$ end{itemize}These two sets of functions have similar differentiation formulas, identities and periodic properties as the classical trigonometric functions. They coincide when $p=2$. Their graphs and asymptotic expansions are also interesting. Through this study, we understand more about the theoretical framework of trigonometric functions. |