Title page for etd-0616113-181255


[Back to Results | New Search]

URN etd-0616113-181255
Author Chen-Yu Kao
Author's Email Address No Public.
Statistics This thesis had been viewed 5333 times. Download 0 times.
Department Electrical Engineering
Year 2012
Semester 2
Degree Master
Type of Document
Language English
Title Preparation and Applications of Zinc Oxide Nanotip and Titanium Oxide Heterojunction
Date of Defense 2013-07-11
Page Count 74
Keyword
  • titanium oxide
  • heterojunction
  • zinc oxide
  • photocatalytic
  • lifetime
  • Abstract Photocatalytic activity of ZnO nanotip is low. To improve this condiction, ZnO nanotip growing on TiO2 film can form heterojunction which make life-time longer and enlarge the area to enhance the photocatalytic activity. This is due to the high reactivity of TiO2 and the large binding energy of ZnO, which improve the process of electron and hole transfer between the corresponding conduction and valence bands.
    In conclusion, the heterostructure of ZnO nanotip/TiO2 film and ZnO nanotip/N-F co-doped TiO2 nanoparticle were prepared by aqueous solution deposition (ASD). TiO2 films are inexpensive, chemically stable and harmless, and have no absorption in the visible region. Therefore, N-F co-doped TiO2 nanoparticle is in order to adjust the titanium dioxide the light to absorb the boundary (optical absorption edge), hoping to enhance the absorption of photoenergy.
    In this heterojunction configuration, several advantages can be obtained: (1) an improvement of charge separation (2) an increase in the lifetime of the charge carrier (3) an enhancement of the interfacial charge transfer efficiency to adsorbed substrate. In our research, heterojunction of ASD-ZnO nanotip on ASD-TiO2 thin film or ASD-N-F co-doped TiO2 nanoparticle show higher photocatalytic activity.
    Advisory Committee
  • Ying-Chung Chen - chair
  • Da-Ren Hang - co-chair
  • Yeong-Her Wang - co-chair
  • Ikai Lo - co-chair
  • Ming-Kwei Lee - advisor
  • Ying-Chung Chen - advisor
  • Files
  • etd-0616113-181255.pdf
  • Indicate in-campus at 99 year and off-campus access at 99 year.
    Date of Submission 2013-07-16

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have more questions or technical problems, please contact eThesys