論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
抑制Calpain-Cdk5-p35路徑對大白鼠脊髓損傷、急性疼痛及嗎啡耐受性之影響 The effects of Calpain-Cdk5-p35 pathway inhibition on rat spinal cord injury, acute pain, and morphine tolerance |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
109 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2005-01-20 |
繳交日期 Date of Submission |
2005-01-27 |
關鍵字 Keywords |
脊髓損傷、calpain、嗎啡耐受性、週期素依賴激酶第五型 cyclin-dependent kinase-5, spinal cord injury, calpain, morphine tolerance |
||
統計 Statistics |
本論文已被瀏覽 5892 次,被下載 4365 次 The thesis/dissertation has been browsed 5892 times, has been downloaded 4365 times. |
中文摘要 |
脊髓損傷、急性疼痛、和嗎啡疼痛耐受性都是臨床上重要的課題。初次傷害引起脊髓型態損傷和生化變化,續發毀滅性的二次傷害,最後摧毀了中樞神經系統、造成神經退化。週邊組織的損傷合併著疼痛接受體的敏感性以及相繼而來發生的中樞神經元的興奮,這些被稱為中樞的敏感性。而疼痛接受體的敏感性和中樞的敏感性被認為是引發原發性和次發性過痛的原因。目前最有效之止痛藥物仍為嗎啡類止痛劑,長期給予這些藥物會產生耐受性,耐受性是指藥物效力的逐次減弱,同時產生後必須將劑量加大才可達到一定的止痛效果。嗎啡耐受性分子生物學的機轉仍舊不明。 近來發現calpain-Cdk5(cyclin-dependent kinase-5)-p35路徑的調控和神經保護、急性疼痛、嗎啡止痛有關。在本論文中,我們以calapain抑制劑-MDL28170和Cdk5抑制劑-roscovitine治療大白鼠脊髓半切除損傷、福馬林引起的急性疼痛、和慢性嗎啡耐受性。結果,抑制calpain-Cdk5-p35路徑可以保護大白鼠脊髓半切除損傷、並避免之後的神經退化,抑制福馬林引起的疼痛縮腳反應、並調控DARPP-32(dopamine and c-AMP regulated phosphoprotein, MW=32 kDa)的磷酸化,將已右移的嗎啡止痛劑量-反應曲線向左反轉、並調降已上昇的ED50(有效劑量的50%)。結論,抑制calpain-Cdk5-p35路徑對於脊髓損傷、急性疼痛、和嗎啡耐受性治療有效,並具有臨床應用的價值。 |
Abstract |
Spinal cord injury, acute pain, and morphine tolerance are important issues in the clinical practice. A primary injury to the spinal cord causes both morphological and biochemical changes with initiation of the devastating secondary pathophysiological pathways that ultimately destroy CNS cells and cause degeneration of nerve fibers. Tissue injury is associated with sensitization of nociceptors and subsequent changes in the excitability of central neurons, known as central sensitization. Nociceptor sensitization and central sensitization are believed to underlie the development of primary and secondary hyperalgesia, respectively. The most efficacious drugs used to relieve pain are the opioid analgesics. Chronic administration leads to the development of tolerance. Tolerance is manifested as a decreased potency of the drug, so that progressively larger doses must be administered to achieve a given level of analgesia. The processes underlying opioid tolerance still need to be elucidated. Recently, it is found calpain-Cdk5 (cyclin-dependent kinase-5)-p35 pathway modulation implicated in neuroprotection, acute nociceptive response, and morphine analgesia. In this thesis, we evaluate calpain inhibitor-MDL28170 and Cdk5 inhibitor-roscovitine against rat spinal cord hemisection, formalin-induced acute nociceptive responses, and chronic morphine tolerance. We found calpain-Cdk5-p35 pathway inhibition could protect spinal cord hemisection and subsequent neurodegeneration, inhibit formalin-induced flinch response involving DARPP-32 (dopamine and c-AMP regulated phosphoprotein, MW=32 kDa) phosphorylation, and reverse right shifted morphine dose-response curve with upregulated ED50 (50% of effective dose) reduction. Taken together, calpain-Cdk5-p35 pathway inhibition is useful in the management of spinal cord injury, acute inflammatory pain, and attenuate morphine tolerance development with further clinical application. |
目次 Table of Contents |
目錄 序 ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ I 序章 ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ II 目錄 ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ IV 中文摘要 ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ VI Abstract ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ VIII 第一章 緒論及文獻回顧 ˙˙˙˙˙˙˙˙˙˙˙ p1 1-1 細胞死亡:壞死和細胞凋亡˙˙˙˙˙˙˙˙ p2 1-2 Calpain ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ p3 1-3 Calpain的活化機轉˙˙˙˙˙˙˙˙˙˙˙ p3 1-4 Calpain抑制劑 ˙˙˙˙˙˙˙˙˙˙˙˙ p4 1-5 Calpain的受質 ˙˙˙˙˙˙˙˙˙˙˙˙ p5 1-6 Calpain抑制劑應用於動物模式˙˙˙˙˙˙ p8 1-7 Calpain和脊髓損傷˙˙˙˙˙˙˙˙˙˙˙ p8 1-8 抑制Calpain活性以治療脊髓損傷 ˙˙˙˙˙p9 1-9 Calpain-Cdk5-p35路徑˙˙˙˙˙˙˙˙˙˙p10 1-10 Alzheimer Disease和Tau˙˙˙˙˙˙˙˙˙p11 1-11 Cyclin-dependent kinase-5 ˙˙˙˙˙˙˙p13 1-12 研究的動機以及目的 ˙˙˙˙˙˙˙˙˙˙ p14 第二章 大白鼠椎管內注射roscovitine 抑制Cdk5的活性並減緩由福馬林 引起的疼痛縮腳反應 ˙˙˙˙˙˙˙˙˙ p16 2-1 摘要 ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ p17 2-2 緒論 ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ p17 2-3 材料與方法 ˙˙˙˙˙˙˙˙˙˙˙˙˙˙ p19 2-4 結果 ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ p21 2-5 討論 ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ p22 第三章 大白鼠椎管內注射roscovitine 延緩嗎啡疼痛耐受性的產生 ˙˙˙˙˙˙ p28 3-1摘要 ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ p29 3-2 緒論 ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ p29 3-3 方法和材料 ˙˙˙˙˙˙˙˙˙˙˙˙˙ p31 3-4 結果 ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ p33 3-5 討論 ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ p34 第四章 Calpain抑制劑抑制p35-p25-Cdk5 活化, 避免tau過度磷酸化及保護 大白鼠脊髓半切除的神經損傷 ˙˙˙˙˙ p39 4-1 摘要 ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ p40 4-2 緒論 ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ p41 4-3 材料與方法˙˙˙˙˙˙˙˙˙˙˙˙˙˙ p43 4-4 結果 ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ p48 4-5 討論 ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ p50 第五章 綜合討論 ˙˙˙˙˙˙˙˙˙˙˙˙˙˙p74 5-1 結論 ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ p75 5-2 本論文之重要性 ˙˙˙˙˙˙˙˙˙˙˙˙ p79 5-3 未來研究方向 ˙˙˙˙˙˙˙˙˙˙˙˙˙ p80 參考文獻˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙p82 已發表論文一覽表˙˙˙˙˙˙˙˙˙˙˙˙˙˙p99 |
參考文獻 References |
1. Majno G, Joris I. Apoptosis, oncosis, and necrosis: an overview of cell death. Am J Pathol 1995;146:3–15. 2. Levin S, Bucci TJ, Cohen SM, Fix AS, Hardisty JF. The nomenclature of cell death: recommendations of an ad hoc committee of the society of toxicologic pathologists. Toxicol Pathol 1999;27:484–90. 3. Lemasters JJ. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol Gastrointest Liver Physiol 1999:276:G1–6. 4. Arends MJ, Morris RG,Wyllie AH. Apoptosis: the role of the endonuclease. Am J Pathol 1990;136:593–608. 5. Giannakis C, Forbes IJ, Zalewski PD.Ca2+/Mg2+-dependent nuclease: tissue distribution, relationship to internucleosomal DNA fragmentation and inhibition by Zn2+. Biochem Biophys Res Commun 1991;181:915–20. 6. Liu X, Rainey JJ, Harriman JF, Schnellmann RG. 2001. Calpains mediate acute renal cell death: role of autolysis and translocation. Am J Physiol Renal Physiol 2001;81:F728–38. 7. Liu X, Harriman JF, Schnellmann RG. Cytoprotective properties of novel nonpeptide calpain inhibitors in renal cells. J Pharmacol Exp Ther 2002;302:88–94. 8. Guroff G. A neutral calcium-activated proteinase from the soluble fraction of rat brain. J Biol Chem 1964;239:149–55. 9. Huang Y, Wang KK. The calpain family and human disease. Trends MolMed 2001;7:355–62. 10. Sorimachi H, Ishiura S, Suzuki K. Structure and physiological function of calpains. Biochem J 1997;328:721–32. 11. Miyoshi H, Umeshita K, Sakon M, Imajoh-Ohmi S, Fujitani K. Calpain activation in plasma membrane bleb formation during tert-butyl hydroperoxide- induced rat hepatocyte injury. Gastroenterology 1996;110:1897–904 12. Rami A, Agarwal R, Botez G, Winckler. 2000. μ-Calpain activation, DNA fragmentation, and synergistic effects of caspase and calpain inhibitors in protecting hippocampal neurons from ischemic damage. Brain Res 2000;866:299–312. 13. Edelstein CL, Yaqoob MM, Alkhunaizi AM, Gengaro PE, Nemenoff RA. Modulation of hypoxia-induced calpain activity in rat renal proximal tubules. Kidney Int 1996;50:1150–57. 14. Harriman JF, Waters-Williams S, Chu DL, Powers JC, Schnellmann RG. Efficacy of novel calpain inhibitors in preventing renal cell death. J Pharmacol Exp Ther 2000;294:1083–87. 15. Blomgren K, Zhu C, Wang X, Karlsson JS, Leverin AL.Synergistic activation of caspase by m-calpain after neonatal hypoxia-ischemia: a mechanism of “pathological apoptosis”? J Biol Chem 2001;276:10191–98. 16. Umezawa H, Miyano T, Murakami T, Takita T, Aoyagi T. Chemistry of enzyme inhibitors of microbial origins. Pure Appl Chem 1973;33:129–44. 17. Creenbaum D, Medzihradszky KF, Burlingame A, Bogyo M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem Biol 2000;7:569–81. 18. Liu X, Van Vleet T, Schnellmann RG. The role of calpain in oncotic cell death. Annu Rev Pharmacol Toxicol 2004;44:349-70. 19. Kusakawa G-I, Saito T, Onuki R, Ishiguro K, Kishimoto T, Hisanaga SI. Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase 5 activator to p25. J Biol Chem 2000;275:17166–72. 20. Nath R, Davis M, Probert AW, Kupina NC, Ren X. Processing of cdk5 activator p35 to its truncated form (p25) by calpain in acutely injured neuronal cells. Biochem Biophys Res Commun 2000;274:16–21. 21. McGinnis KM, Shariat-Madar Z, Gnegy ME. Cytosolic calmodulin is increased in SK-N-SH human neuroblastoma cells by release of calcium from the intracellular stores. J Neurochem 1998;70: 139–46. 22. Endo S, Ishiguro S, Tamai M. Possible mechanism for the decrease of mitochondrial aspartate aminotransferase activity in ischemic and hypoxic retinas. Biochim Biophys Acta 1999;1450:385–96. 23. Blomgren K, Hallin U, Andersson AL, Puka-Sundvall M, Bahr BA. Calpastatin is up-regulated in response to hypoxia and is a suicidal substrate to calpain after neonatal cerebral hypoxiaischemia. J Biol Chem 1999;274:14046–52. 24. Croall DE, Demartino GN. Calcium-activated neutral protease (calpain) system: structure, function and regulation. Physiol Rev 1991;71:813–47. 25. Shi Y, Melnikov VY, Schrier RW, Edelstein CL. Downregulation of the calpain inhibitor protein calpastatin by caspases during renal ischemia-reperfusion. Am J Physiol Renal Physiol 2000;279:F509–17. 26. Yoshida KI. Myocardial ischemia reperfusion injury and proteolysis of fodrin, ankyrin, and calpastatin. Methods Mol Biol 2000;144:267–75. 27. Chatterjee PK, Brown PA, Cuzzocrea S, Sacharowski K, Stewart KN. Calpain inhibitor-1 reduces renal ischemia/reperfusion injury in rat. Kidney Int 2001;59:2073–83. 28. McDonald MC, Mota-Filipe H, Paul A, Cuzzocrea S, Abdelrahman M. Calpain inhibitor I reduces the activation of nuclear factor-kappa B and organ injury/dysfunction in hemorrhagic shock. FASEB J 2001;15:171–86. 29. Kohli V, GaoW, Camargo CA Jr, Clavien PA. Calpain is a mediator of preservation- reperfusion injury in rat liver transplantation. Proc Natl Acad Sci USA 1997:94:9354–59. 30. Kohli V, Madden JF, Bentley RC, Clavien PA. Calpain mediates ischemic injury of the liver through modulation of apoptosis and necrosis. Gastroenterology 1999;116:168–78. 31. Hong S-C, Goto Y, Lanzino G, Soleau S, Kassell NF. Neuroprotection with a calpain inhibitor in a model of focal cerebral ischemia. Stroke 1994;25:663–69. 32. Schumacher PA, Siman RG, Fehlings MG. Pretreatment with calpain inhibitor CEP-4143 inhibits calpain I activation and cytoskeletal degradation, improves neurological function, and enhances axonal survival after traumatic spinal cord injury. J Neurochem 2000;74:1646–55. 33. Banik NL, Shields DC, Ray SK, Hogan EL. The pathophysiological role of calpain in spinal cord injury, in: Wang KKW, Yuen P. (Eds.), Calpain – Pharmacology and Toxicology of Calcium Dependent Protease. Taylor & Francis, Philadelphia, PA, 1999, pp. 211–27. 34. Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys, Nat Med 1997;3:73–6. 35. Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 1991;75:15–26. 36. Young W. Secondary injury mechanisms in acute spinal cord injury. J Emerg Med 1993;11:13–22. 37. Banik NL, Powers ML, Hogan EL. The effect of spinal cord trauma on myelin. J Neuropathol Exp Neurol 1980;19:232–44. 38. Bresnahan JC. An electron microscopic analysis of axonal altera- tions following blunt contusion of the spinal cord of the rhesus monkey (Macaca mulatta). J Neurol Sci 1978;37:59–82. 39. Banik NL, McAlhaney WW, Hogan EL. Calcium-stimulated proteolysis in myelin: evidence for a Ca2+-activated neutral proteinase associated with purified myelin of rat CNS. J Neurochem 1985;45:581–88. 40. Springer JE, Azbill RD, Kennedy SE, George J, Geddes JW. Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochem 1997;69:1592–600. 41. Ray SK, Matzelle DC, Wilford GG, Hogan EL, Banik NL.E-64-d prevents both calpain upregulation and apoptosis in the lesion and penumbra following spinal cord injury in rats, Brain Res 2000; 867:80–9. 42. Balentine JD, Hogan EL, Banik NL, Perot PL.Calcium and the pathogenesis of spinal cord injury, in: Dacey RG, Winn HR, Rimel RW, Jane JA. (Eds.), Trauma of the Central Nervous System, Raven Press, New York, 1985, pp. 285–295. 43. Happel RD, Smith KP, Banik NL, Powers JM, Hogan EL, Balentine JD. Calcium-accumulation in experimental spinal cord trauma, Brain Res 1981;211:476–9. 44. Wang CX, Nuttin B, Heremans H, Dom R, Gybels J, Production of tumor necrosis factor in spinal cord following traumatic injury in rats. J Neuroimmunol 1996;69:151–6. 45. Stokes BT, Fox P, Hollinder G. Extracellular calcium activity in the injured spinal cord. Exp Neurol 1983;80:561–72. 46. Ray SK, Banik NL. Calpain. Mol Med 2002;5:435–40. 47. Banik NL, Hogan EL, Powers JM, Smith K. Proteolytic enzymes in spinal cord injury. J Neurol Sci 1986;73:245–56. 48. Banik NL, Hogan EL, Powers JM, Whetstine LJ. Degradation of cytoskeletal proteins in spinal cord injury. Neurochem Res 1982;7:1465–75. 49. Dowd DR, MacDonald PN, Komm BS, Haussler MR, Miesfeld R. Evidence for early induction of calmodulin gene expression in lymphocytes undergoing glucocorticoid-mediated apoptosis. J Biol Chem 1991;266:18423–6. 50. Ray SK, Dixon CE, Banik NL. Molecular mechanisms in the pathogenesis of traumatic brain injury. Histol Histopathol 2002;17:1137–52. 51. Mellgren RL, Mericle MT, Lane RD. Proteolysis of the calcium-dependent protease inhibitor by myocardial calcium-dependent protease. Arch Biochem Biophys 1986;246:233–9. 52. Nakamura M, Inomata M, Imajoh S, Suzuki K, Kawashima S. Fragmentation of an endogenous inhibitor upon complex formation with high- and low-calcium requiring forms of calcium-activated neutral proteases. Biochemistry 1989;28:449–55. 53. Nagao S, Saido TC, Akita Y, Tsuchiya T, Suzuki K, Kawashima S. Calpain-calpastatin interactions in epidermoid carcinoma KB cells. J Biochem (Tokyo) 1994;15:1178–84. 54. Blomgren K, Hallin U, Andersson AL, Puka-Sundvall M. Calpas-tatin is upregulated in response to hypoxia and is a suicide substrate to calpain after neonatal cerebral hypoxia–ischemia. J Biol Chem 1999;274:14046–52. 55. Saido TC, Kawashima S, Tani E, Yokota M. Up- and down-regulation of calpain inhibitor polypeptide, calpastatin, in post-ischemic hippocampus. Neurosci Lett 1997;277:75–8. 56. Tamai M, Matsumoto K, Omura S, Koyama I. In vitro and in vivo inhibition of cysteine proteases by EST, a new analog of E-64. J Pharmacobio-Dyn 1986;9:672–7. 57. Arlinghaus L, Mehdi S, Lee K, Improved post-hypoxic recovery with a membrane permeable calpain inhibitor. Eur J Pharmacol 1991;209:123–5. 58. Bartus RT, Heyward NJ, Elliott PJ, Sawyer SD, Baker KL. Calpain inhibitor AK295 protects neurons from focal brain ischemia: Effects of post-occlusion intra-arterial administration. Stroke 1994;25:2265–70. 59. Mandelkow EM, Mandelkow E. Tau in Alzheimer's disease. Trends Cell Biol 1998;8:425-7. 60. Imahori K, Uchida T. Physiology and pathology of tau protein kinases in relation to Alzheimer's disease. J Biochem (Tokyo) 1997;121:179-88. 61. Pei JJ, Grundke-Iqbal I, Iqbal K, Bogdanovic N, Winblad B, Cowburn RF. Accumulation of cyclin-dependent kinase 5 (cdk5) in neurons with early stages of Alzheimer's disease neurofibrillary degeneration. Brain Res 1998;797:267-77. 62. Takahashi M, Iseki E, Kosaka K. Cdk5 and munc-18/p67 co-localization in early stage neurofibrillary tangles-bearing neurons in Alzheimer type dementia brains. J Neurol Sci 2000;172:63-9. 63. Tang D, Wang JH. Cyclin-dependent kinase 5 (Cdk5) and neuron-specific Cdk5 activators. Prog Cell Cycle Res 1996;2:205-16. 64. Tsai LH, Delalle I, Caviness VS Jr, Chae T, Harlow E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 1994;371:419-23. 65. Lew J, Huang QQ, Qi Z, Winkfein RJ, Aebersold R, Hunt T, Wang JH. A brain-specific activator of cyclin-dependent kinase 5. Nature 1994;371:423-6. 66. Lee KY, Rosales JL, Tang D, Wang JH. Interaction of cyclin-dependent kinase 5 (Cdk5) and neuronal Cdk5 activator in bovine brain. J Biol Chem 1996;271:1538-43. 67. Ahlijanian MK, Barrezueta NX, Williams RD, Jakowski A, Kowsz KP, McCarthy S, Coskran T, Carlo A, Seymour PA, Burkhardt JE, Nelson RB, McNeish JD. Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc Natl Acad Sci USA 2000;97:2910-5. 68. Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 1999;402:615-22. 69. Mark RJ, Blanc EM, Mattson MP. Amyloid beta-peptide and oxidative cellular injury in Alzheimer's disease. Mol Neurobiol 1996;12:211-24. 70. Iwamoto N, Thangnipon W, Crawford C, Emson PC. Localization of calpain immunoreactivity in senile plaques and in neurones undergoing neurofibrillary degeneration in Alzheimer's disease. Brain Res 1991;561:177-80. 71. Saito K, Elce JS, Hamos JE, Nixon RA. Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration. Proc Natl Acad Sci USA 1993;90:2628-32. 72. Nath R, Raser KJ, Stafford D, Hajimohammadreza I, Posner A, Allen H, Talanian RV, Yuen P, Gilbertsen RB, Wang KK. Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem J 1996;319:683-90. 73. Nath R, Raser KJ, McGinnis K, Nadimpalli R, Stafford D, Wang KK. Effects of ICE-like protease and calpain inhibitors on neuronal apoptosis. Neuroreport 1996;8:249-55. 74. Nicotera P, Lipton SA. Excitotoxins in neuronal apoptosis and necrosis. J Cereb Blood Flow Metab 1999;19:583-91. 75. Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 2000;405:360-4. 76. Zhu X, Castellani RJ, Takeda A, Nunomura A, Atwood CS, Perry G, Smith MA. Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the 'two hit' hypothesis. Mech Ageing Dev 2001;123:39-46. 77. Drewes G. MARKing tau for tangles and toxicity. Trends Biochem Sci 2004;29:548-55. 78. Goedert M. Tau protein and neurodegeneration. Semin Cell Dev Biol 2004;15:45-9. 79. German DC, Eisch AJ. Mouse models of Alzheimer's disease: insight into treatment. Rev Neurosci 2004;15:353-69. 80. Iqbal K, Alonso Adel C, Chen S, Chohan MO, El-Akkad E, Gong CX, Khatoon S, Li B, Liu F, Rahman A, Tanimukai H, Grundke-Iqbal I. Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 2005;1739:198-210. 81. Gomez-Ramos A, Smith MA, Perry G, Avila J. Tau phosphorylation and assembly. Acta Neurobiol Exp (Wars) 2004;64:33-9. 82. Haddad JJ. Mitogen-activated protein kinases and the evolution of Alzheimer's: a revolutionary neurogenetic axis for therapeutic intervention? Prog Neurobiol 2004;73:359-77. 83. Fischer A, Sananbenesi F, Spiess J, Radulovic J. Cdk5 in the adult non-demented brain. Curr Drug Targets CNS Neurol Disord 2003;2:375-81. 84. Patrick GN, Zhou P, Kwon YT, Howley PM, Tsai LH. p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. J Biol Chem 1998;273:24057-64. 85. Lee MS, Tsai LH. Cdk5: one of the links between senile plaques and neurofibrillary tangles? J Alzheimers Dis 2003;5:127-37. 86. Wang J, Liu S, Fu Y, Wang JH, Lu Y. Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nat Neurosci 2003;6:1039-47. 87. Kerokoski P, Suuronen T, Salminen A, Soininen H, Pirttila T. Both N-methyl-D-aspartate (NMDA) and non-NMDA receptors mediate glutamate-induced cleavage of the cyclin-dependent kinase 5 (cdk5) activator p35 in cultured rat hippocampal neurons. Neurosci Lett 2004;368:181-5. 88. Shimoyama N, Shimoyama M, Davis AM, Monaghan DT, Inturrisi CE. An antisense oligonucleotide to the N-Methyl-D-aspartate (NMDA) subunit NMDAR1 attenuates NMDA-induced nociception, hyperalgesia, and morphine tolerance. J Pharmacol Exp Ther 2005;312:834-40. 89. Chiao YC, Wong CS. Opioid tolerance: is there a dialogue between glutamate and beta-arrestin? Acta Anaesthesiol Taiwan 2004;42:93-101. 90. Villetti G, Bergamaschi M, Bassani F, Bolzoni PT, Maiorino M, Pietra C, Rondelli I, Chamiot-Clerc P, Simonato M, Barbieri M. Antinociceptive activity of the N-methyl-D-aspartate receptor antagonist N-(2-Indanyl)-glycinamide hydrochloride (CHF3381) in experimental models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 2003;306:804-14. 91. Yaksh TL, Hua XY, Kalcheva I, Nozaki-Taguchi N, Marsala M. The spinal biology in humans and animals of pain states generated by persistent small afferent input. Proc Natl Acad Sci USA 1999; 96: 7680-6. 92. Urban MO, Gebhart GF. Supraspinal contributions to hyperalgesia. Proc Natl Acad Sci USA 1999; 96: 7687-92. 93. Afrah AW, Stiller CO, Olgart L, Brodin E, Gustafsson H. Involvement of spinal N-methyl-D-aspartate receptors in capsaicin-induced in vivo release of substance P in the rat dorsal horn. Neurosci Lett 2001; 316: 83-6. 94. Dolan S, Nolan AM. N-methyl-D-aspartate induced mechanical allodynia is blocked by nitric oxide synthase and cyclooxygenase-2 inhibitors. Neuroreport 1999; 10: 449-52. 95. Nishi A, Bibb JA, Matsuyama S, Hamada M, Higashi H, Nairn AC, et al. Regulation of DARPP-32 dephosphorylation at PKA- and Cdk5-sites by NMDA and AMPA receptors: istinct roles of calcineurin and protein phosphatase-2A. J Neurochem 2002: 81: 832-41. 96. Greengard P. The neurobiology of slow synaptic transmission. Science 2001; 294: 1024-30. 97. Hemmings HC, Nairn AC, Greengard P. DARPP-32, a dopamine- and adenosine 3':5'-monophosphate-regulated neuronal phosphoprotein. II. Comparison of the kinetics of phosphorylation of DARPP-32 and phosphatase inhibitor 1. J Biol Chem 1984; 259: 14491-7. 98. Bibb JA, Snyder GL, Nishi A, Yan Z, Meijer L, Fienberg AA, et al. Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature 1999; 402: 669-71. 99. Meijer L, Borgne A, Mulner O, Chong JP, Blow JJ, Inagaki N, et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 1997: 243: 527-36. 100. Li BS, Sun MK, Zhang L, Takahashi S, Ma W, Vinade L, et al. Regulation of NMDA receptors by cyclin-dependent kinase-5. Proc Natl Acad Sci USA 2001; 98: 12742-7. 101. Wang CH, Lee TH, Tsai YJ, Liu JK, Chen YJ, Yang LC, et al. Intrathecal cdk5 inhibitor, roscovitine, attenuates morphine antinociceptive tolerance in rats. Acta Pharmacol Sin 2004; 25: 1027-30. 102. Malmberg AB, Yaksh TL. Antinociceptive actions of spinal nonsteroidal anti-inflammatory agents on the formalin test in the rat. J Pharmacol Exp Ther 1992; 263: 136-46. 103. Coderre TJ, Vaccarino AL, Melzack R. Central nervous system plasticity in the tonic pain response to subcutaneous formalin injection. Brain Res 1990: 535: 155-8. 104. Tjolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. The formalin test: an evaluation of the method. Pain 1992; 51: 5-17. 105. Dickenson AH, Sullivan AF. Subcutaneous formalin-induced activity of dorsal horn neurones in the rat: differential response to an intrathecal opiate administered pre or post formalin. Pain 1987; 30: 349-60. 106. Tomizawa K, Ohta J, Matsushita M, Moriwaki A, Li ST, Takei K, et al. Cdk5/p35 regulates neurotransmitter release through phosphorylation and downregulation of P/Q-type voltage-dependent calcium channel activity. J Neurosci 2002; 22: 2590-7. 107. Nestler EJ. Under siege: the brain on opiates. Neuron 1996; 16: 897-900. 108. Basbaum AI. Insights into the development of opioid tolerance. Pain 1995; 61: 349-52. 109. Nestler EJ, Aghajanian GK. Molecular and cellular basis of addiction. Science 1997; 278: 58-63. 110. Nestler EJ, Barrot M, Self DW. DeltaFosB: a sustained molecular switch for addiction. Proc Natl Acad Sci USA 2001; 98: 11042-6. 111. Li X, Clark JD. Morphine tolerance and transcription factor expression in mouse spinal cord tissue. Neurosci Lett 1999; 272: 79-82. 112. Bibb JA, Chen J, Taylor JR, Svenningsson P, Nishi A, Snyder GL, et al. Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 2001; 410: 376-80. 113. Hellmich MR, Pant HC, Wada E, Battey JF. Neuronal cdc2-like kinase: a cdc2-related protein kinase with predominantly neuronal expression. Proc Natl Acad Sci USA 1992; 89: 10867-71. 114. Lew J, Winkfein RJ, Paudel HK, Wang JH. Brain prolinedirected protein kinase is a neurofilament kinase which displays high sequence homology to p34cdc2. J Biol Chem 1992; 267: 25922-6. 115. Tsai LH, Delalle I, Caviness VS, Chae T, Harlow E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 1994; 371: 419-23. 116. Lew J, Huang QQ, Qi Z, Winkfein RJ, Aebersold R, Hunt T, et al. A brain-specific activator of cyclin-dependent kinase 5. Nature 1994; 371: 423-6. 117. Humbert S, Dhavan R, Tsai L. p39 activates cdk5 in neurons, and is associated with the actin cytoskeleton. J Cell Sci 2000; 113: 975-83. 118. Zukerberg LR, Patrick GN, Nikolic M, Humbert S, Wu CL, Lanier LM, et al. Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 2000; 26: 633-46. 119. Liu F, Ma XH, Ule J, Bibb JA, Nishi A, DeMaggio AJ, et al. Regulation of cyclin-dependent kinase 5 and casein kinase 1 by metabotropic glutamate receptors. Proc Natl Acad Sci USA 2001; 98: 11062-8. 120. Ferrer-Alcon M, La Harpe R, Guimon J, Garcia-Sevilla JA. Downregulation of neuronal cdk5/p35 in opioid addicts and opiate-treated rats: relation to neurofilament phosphorylation. Neuropsychopharmacology 2003; 28: 947-55. 121. Meijer L, Borgne A, Mulner O, Chong JP, Blow JJ, Inagaki N, et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 1997; 243: 527-36. 122. Li BS, Sun MK, Zhang L, Takahashi S, Ma W, Vinade L, et al. Regulation of NMDA receptors by cyclin-dependent kinase-5. Proc Natl Acad Sci USA 2001; 98: 12742-7. 123. Yamamoto T, Nozaki-Taguchi N. Effects of intrathecally administered nociceptin, an opioid receptor-like1 receptor agonist, and N-methyl-D-aspartate receptor antagonists on the thermal hyperalgesia induced by partial sciatic nerve injury in the rat. Anesthesiology 1997; 87: 1145-52. 124. Collins GH, West NR, Parmely JD, Samson FM, Ward DA. The histopathology of freezing injury to the rat spinal cord. A light microscope study. I. Early degenerative changes. J Neuropathol Exp Neurol 1986;45: 721–741. 125. Bethea JR, Dietrich WD. Targeting the host inflammatory response in traumatic spinal cord injury. Curr Opin Neurol 2002;15:355–360. 126. Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 1991;75:15–26. 127. Houle JD, Tessler A. Repair of chronic spinal cord injury. Exp Neurol 2003;182:247–260. 128. Davies SJ, Field PM, Raisman G. Regeneration of cut adult axons fails even in the presence of continuous aligned glial pathways. Exp Neurol 1996;142:203–216. 129. Stichel CC, Muller HW. The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tissue Res 1998;294:1–9. 130. Schmitt AB, Buss A, Breuer S, et al. Major histocompatibility complex class II expression by activated microglia caudal to lesions of descending tracts in the human spinal cord is not associated with a T cell response. Acta Neuropathol (Berl) 2000;100:528–536. 131. Morino T, Ogata T, Horiuchi H, et al. Delayed neuronal damage related to microglia proliferation after mild spinal cord compression injury. Neurosci Res 2003;46:309–318 132. Carlson SL, Parrish ME, Springer JE, Doty K, Dossett L. Acute inflammatory response in spinal cord following impact injury. Exp Neurol 1998;151:77–88. 133. Tzeng SF, Kahn M, Liva S, De Vellis J. Tumor necrosis factor-alpha regulation of the Id gene family in astrocytes and microglia during CNS inflammatory injury. Glia 1999;26:139–152. 134. Shields DC, Schaecher KE, Hogan EL, Banik NL. Calpain activity and expression increased in activated glial and inflammatory cells in penumbra of spinal cord injury lesion. J Neurosci Res 2000;61:146–150. 135. Schaecher KE, Shields DC, Banik NL. Mechanism of myelin breakdown in experimental demyelination: a putative role for calpain. Neurochem Res 2001;26:731–737. 136. Schumacher PA, Siman RG, Fehlings MG. Pretreatment with calpain inhibitor CEP-4143 inhibits calpain I activation and cytoskeletal degradation, improves neurologic function, and enhances axonal survival after traumatic spinal cord injury. J Neurochem 2000;74:1646–1655. 137. Lou J, Lenke LG, Ludwig FJ, O’Brien MF. Apoptosis as a mechanism of neuronal cell death following acute experimental spinal cord injury. Spinal Cord 1998;36:683–690. 138. Beattie MS, Li Q, Bresnahan JC. Cell death and plasticity after experimental spinal cord injury. Prog Brain Res 2000;128:9–21. 139. Ray SK, Matzelle DD, Wilford GG, Hogan EL, Banik NL. Inhibition of calpain-mediated apoptosis by E-64 d-reduced immediate early gene (IEG) expression and reactive astrogliosis in the lesion and penumbra following spinal cord injury in rats. Brain Res 2001;916:115–126. 140. Yokota M, Saido TC, Kamitani H, Tabuchi S, Satokata I, Watanabe T. Calpain induces proteolysis of neuronal cytoskeleton in ischemic gerbil forebrain. Brain Res 2003;984:122–132. 141. Pang Z, Bondada V, Sengoku T, Siman R, Geddes JW. Calpain facilitates the neuron death induced by 3-nitropropionic acid and contributes to the necrotic morphology. J Neuropathol Exp Neurol 2003;62:633–643. 142. Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev 2003;83:731–801. 143. Liu X, Schnellmann RG. Calpain mediates progressive plasma membrane permeability and proteolysis of cytoskeleton-associated paxillin, talin, and vinculin during renal cell death. J Pharmacol Exp Ther 2003;304:63–70. 144. Wingrave JM, Schaecher KE, Sribnick EA, et al. Early induction of secondary injury factors causing activation of calpain and mitochondriamediated neuronal apoptosis following spinal cord injury in rats. J Neurosci Res 2003;73:95–104. 145. Chae T, Kwon YT, Bronson R, Dikkes P, Li E, Tsai LH. Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 1997;18:29–42. 146. Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 1999;402:615–622 147. Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 2000;405:360–364. 148. Ray SK, Banik NL. Calpain and its involvement in the pathophysiology of CNS injuries and diseases: therapeutic potential of calpain inhibitors for prevention of neurodegeneration. Curr Drug Target CNS Neurol Disord 2003;2:173–189. 149. Wang CH, Chen YJ, Lee TH, et al. Protective effect of MDL28170 against thioacetamide-induced acute liver failure in mice. J Biomed Sci 2004;11:571–578. 150. Li PA, Howlett W, He QP, Miyashita H, Siddiqui M, Shuaib A. Postischemic treatment with calpain inhibitor MDL 28170 ameliorates brain damage in a gerbil model of global ischemia. Neurosci Lett 1998;247:17–20. 151. Zhang SX, Bondada V, Geddes JW. Evaluation of conditions for calpain inhibition in the rat spinal cord: effective postinjury inhibition with intraspinal MDL28170 microinjection. J Neurotrauma 2003;20:59–67. 152. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 1995;12:1–21. 153. Springer JE, Azbill RD, Kennedy SE, George J, Geddes JW. Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochem 1997;69:1592–1600. 154. Ferrer I, Planas AM. Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol 2003;62:329–339. 155. Choi WS, Lee EH, Chung CW, et al. Cleavage of Bax is mediated by caspase-dependent or independent calpain activation in dopaminergic neuronal cells: protective role of Bcl-2. J Neurochem 2001;77:1531–1541. 156. Nath R, Davis M, Probert AW, et al. Processing of Cdk5 activator p35 to its truncated form (p25) by calpain in acutely injured neuronal cells. Biochem Biophys Res Commun 2000;274:16–21. 157. Cruz JC, Tseng HC, Goldman JA, Shih H, Tsai LH. Aberrant Cdk5 activation by p25 triggers pathologic events leading to neurodegeneration and neurofibrillary tangles. Neuron 2003;40:471–483. 158. Munoz DG, Greene C, Perl DP, Selkoe DJ. Accumulation of phosphorylated neurofilaments in anterior horn motoneurons of amyotrophic lateral sclerosis patients. J Neuropathol Exp Neurol 1988;47:9–18. 159. Togo T, Dickson DW. Tau accumulation in astrocytes in progressive supranuclear palsy is a degenerative rather than a reactive process. Acta Neuropathol (Berl) 2002;104:398–402. 160. Hashiguchi M, Saito T, Hisanaga S, Hashiguchi T. Truncation of Cdk5 activator p35 induces intensive phosphorylation of Ser202/Thr205 of human tau. J Biol Chem 2002;277:44525–44530. 161. Geschwind DH. Tau phosphorylation, tangles, and neurodegeneration: the chicken or the egg? Neuron 2003;40:457–460. 162. Ray SK, Hogan EL, Banik NL. Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Brain Res Rev 2003;42:169–185. 163. Zhivotovsky B, Burgess DH, Vanags DM, Orrenius S. Involvement of cellular proteolytic machinery in apoptosis. BiochemBiophys Res Commun 1997;230:481–488. 164. Crocker SJ, Smith PD, Jackson-Lewis V, et al. Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson’s disease. J Neurosci 2003;23:4081–4091. 165. Manev H, Favaron M, Siman R, Guidotti A, Costa E. Glutamate neurotoxicity is independent of calpain I inhibition in primary cultures of cerebellar granule cells. J Neurochem 1991;57:1288–1295. 166. Adamec E, Beermann ML, Nixon RA. Calpain I activation in rat hippocampal neurons in culture is NMDA receptor selective and not essential for excitotoxic cell death. Brain Res Mol Brain Res 1998;54:35–48. 167. Giulian D, Vaca K. Inflammatory glia mediate delayed neuronal damage after ischemia in the central nervous system. Stroke 1993;24:I84–I90. 168. Dusart I, Schwab ME. Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur J Neurosci 1994;6:712–724. 169. Gross A, McDonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis. Genes Dev 1999;13:1899–1911. 170. Cao G, Minami M, Pei W, et al. Intracellular Bax translocation after transient cerebral ischemia: implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death. J Cereb Blood Flow Metab 2001;21:321–333. 171. Antonsson B, Conti F, Ciavatta A, et al. Inhibition of Bax channel-forming activity by Bcl-2. Science 1997;277:370–372. 172. Maccioni RB, Otth C, Concha II, Munoz JP. The protein kinase Cdk5. Structural aspects, roles in neurogenesis and involvement in Alzheimer’s pathology. Eur J Biochem 2001;268:1518–1527. 173. Town T, Zolton J, Shaffner R, et al. p35/Cdk5 pathway mediates soluble amyloid-beta peptide-induced tau phosphorylation in vitro. J Neurosci Res 2002;69:362–372. 174. Wang JZ, Grundke-Iqbal I, Iqbal K. Glycosylation of microtubuleassociated protein tau: an abnormal posttranslational modification in Alzheimer’s disease. Nat Med 1996;2:871–875. 175. Goedert M, Jakes R, Vanmechelen E. Monoclonal antibody AT8 recognises tau protein phosphorylated at both serine 202 and threonine 205. Neurosci Lett 1995;189:167–169. 176. Preuss U, Doring F, Illenberger S, Mandelkow EM. Cell cycle-dependent phosphorylation and microtubule binding of tau protein stably transfected into Chinese hamster ovary cells. Mol Biol Cell 1995;6:1397–1410. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |