Responsive image
博碩士論文 etd-0101118-125854 詳細資訊
Title page for etd-0101118-125854
論文名稱
Title
聚氧乙烯衍生高分子在超分子與中孔洞材料的應用
PEO Based Polymers for Supramolecular and Mesoporous Materials Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
176
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-01-23
繳交日期
Date of Submission
2018-02-01
關鍵字
Keywords
嵌段共聚物、中孔洞材料、結晶、多重氫鍵、高分子電解質、超分子結構
multiple hydrogen bonding, supramolecular structure, block copolymer, mesoporous materials, crystallization, polymer electrolytes
統計
Statistics
本論文已被瀏覽 5816 次,被下載 91
The thesis/dissertation has been browsed 5816 times, has been downloaded 91 times.
中文摘要
在本研究中,我們結合二個部份在一個基礎工作上。在本研究的第一個部份,以一個具有末端尿嘧啶基團鏈系的短鏈聚環氧乙烷,製備尿嘧啶−聚環氧乙烷與尿嘧啶−聚環氧乙烷−尿嘧啶等高分子。以微差掃瞄卡計、廣角X光散射儀、鋰核磁共振光譜、以及傅利葉轉換紅外線光譜進行觀察,顯示尿嘧啶基團在固態電解質中,於調控玻璃轉移溫度與促進鋰離子的轉移扮演關鍵性的角色。然後我們合成多面體矽氧烷並與尿嘧啶−聚環氧乙烷與尿嘧啶−聚環氧乙烷−尿嘧啶等高分子進行混摻,以穿透式電子顯微鏡與動態光散射粒徑分析儀進行觀察,顯示這些混摻系統存在自組裝的超分子結構。
  在本研究的第二個部份,我們以聚氧乙烯−聚己內酯雙嵌段共聚物作為模板製備中孔洞材料。依實驗數據顯示在系統中的交互作用力導致多樣性的組成相依中孔洞結構形成,包含六角堆積柱狀、面心立方堆積球狀、以及無序球狀微胞結構。當使用POSS衍生物作為矽前驅物,我們發現其喜好形成微胞臂狀間具有POSS鏈段結晶的形態,在未來將可利用模板與前驅物的比例控制形成微胞狀的結構。
Abstract
In this study, we have combined, few directions into one fundamental work. In the first part of this study, we tethered terminal uracil groups onto short-chain poly(ethylene glycol) (PEG) to form the polymers, uracil (U)-PEG and U-PEG-U. Differential scanning calorimetry, wide-angle X-ray scattering, 7Li nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy revealed that the presence of the uracil groups in the solid state electrolytes had a critical role in tuning the glass transition temperatures and facilitating the transfer of Li+ ions. Then, we have synthesized a multi-diamidopyridine-functionalized polyhedral oligomeric silsesquioxane (MD-POSS) and blend it with U-PEG and U-PEG-U copolimers. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) revealed that supramolecular structures self-assembled from mixtures of MD-POSS and U–PEG and from MD-POSS and U–PEG–U.
In second part of this study we employed poly(ethylene oxide-b-lactide) (PEO-b-PLA) diblock copolymers as templates to prepare mesoporous silica materials. Data reveals, that interaction in the system led to the formation of a variety of composition-dependent mesoporous structures, including hexagonally packed cylinders, face-centered cubic-packed spheres, and disordered spherical micelle structures. When using POSS derivatives as silica precursor, we have found out, that formation of micelles with incorporation of crystallized POSS segments in between “arms” of the micelle is more favorable than any other formation. As a result, the ratio of template to precursor can be used to control the formation of the micelle like structures in the future.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
Table of Content iv
List of Tables viii
List of Schemes ix
List of Figures x
Chapter 1 – Theory 1
1. Lithium batteries 1
1.1. The lithium-ion battery 1
1.2. Lithium-ion polymer batteries 9
1.3. Solid Polymer Electrolyte Lithium Batteries 12
1.4. Electrolytes in Li-batteries 14
2. PEG 15
3. Supramolecular polymers 18
4. POSS 27
5. References 34
Chapter 2 – Supramolecular Functionalities Influence the Thermal Properties, Interactions, and Conductivity Behavior of Poly(ethylene glycol)/LiAsF6 Blends 40
1. Introduction 40
2. Experimental Section 43
2.1. Materials 43
2.2. LiAsF6/U-PEG and LiAsF6/U-PEG-U Polymer Electrolytes 44
2.3. Characterization 44
3. Results and Discussion 46
3.1. Thermal Analyses 46
3.2. WAXD Analyses 50
3.3. FTIR Spectroscopic Analyses 52
3.4. 7Li MAS NMR Spectroscopy 58
3.5. Ionic Conductivity 60
4. Conclusions 62
5. References 62
Chapter 3 - Supramolecular Structures of Uracil-Functionalized PEG with Multi-Diamidopyridine POSS through Complementary Hydrogen Bonding Interactions 66
1. Introduction 66
2. Experiments 68
2.1. Materials 68
2.2. Synthesis of MD-POSS 68
2.3. Synthesis of U-PEG 74
2.4. Synthesis of U-PEG-U 75
3. Supramolecular Structures MD-POSS/U-PEG and MD-POSS/U-PEG-U 77
4. Characterization 77
5. Results and discussion 79
5.1. Synthesis of MD-POSS 79
5.2. Syntheses of U-PEG and U-PEG-U 82
5.3. Self-assembly of supramolecular structures from U-PEG and U-PEG-U with MD-POSS 86
6. Conclusions 101
7. References 102
Chapter 4 – Crystallization Ability of Poly(lactic acid) Block Segments in Templating Poly(ethylene oxide–b–lactic acid) Diblock Copolymers Affects the Resulting Structures of Mesoporous Silicas 106
1. Introduction 106
2. Experimental 109
2.1. Materials 109
2.2. PEO-b-PLA Copolymers Featuring Different Molecular Weights of Their PLA Block Segments 109
2.3. Mesoporous Silicas Templated by PEO-b-PLA Copolymers 110
3. Characterization 111
4. Results and Discussion 112
4.1. Synthesis of PEO-b-PLA Diblock Copolymers 112
4.2. Mesoporous Silicas Templated by PEO-b-PLA Diblock Copolymers 113
4.3. Mesoporous Silicas Templated by Various PEO-b-PLA Copolymers at Different TEOS–to–PEO-b-PLA Weight Ratios 116
4.4. Comparison of Crystalline/Crystalline PEO-b-PLLA and Crystalline/ Amorphous PEO-b-PLA Diblock Copolymer Templates 126
5. Conclusions 130
6. References 131
Chapter 5 – Ability of PEO-b-PLA block copolymers to form micelle-like mesoporous structure via templating with OV-POSS-SILY as silica precursor 134
1. Introduction 134
2. Experimental section 137
2.1. Materials 137
2.2. Synthesis of PEO-b-PLA copolymers featuring different molecular weights of their PLA block segments 138
2.3. Synthesis of OV-POSS-SIL 139
2.4. Mesoporous silicas templated by PEO-b-PLA copolymers 141
3. Characterization 143
4. Results and discussion 144
4.1. Mesoporous silicas templated by PEO-b-PLA diblock copolymers with OV-POSS-SILY as the silica precursor 144
4.2. Structure analysis of OV-POSS-SIL templated by PEO-b-PLA 146
5. Conclusions 153
6. References 154
Chapter 6 – Conclusions 157
Resume 159
參考文獻 References
Chapter 1
1. Merriam-Webster Online Dictionary, 2011.
2. Davis F. J. Polymer Chemistry: A Practical Approach; Oxford University Press, 2004.
3. M. Rubinstein, Ralph H. Polymer Physics; Colby Oxford University Press, 2003.
4. Dngrando L. Chemistry: Matter and Change; Glencoe Publishing Co, 2005.
5. Buchmann I. Batteries in a Portable World: A Handbook on Rechargeable Batteries for Non-Engineers; Chemistry matter and change, 2011.
6. Bronstein, L.M. et al. Solid State Ionics 2005, 176, 559
7. Bronstein, L. M. et al. Chem. Mater. 2001, 13, 3678.
8. Bronstein, L.M. et al. J.Phys. Chem. B 2004, 108, 5851
9. Karlinsey, R.L. et al. J. Phys.Chem. B 2004, 108, 91
10. Weston, J. E.; Steele, B. C. H. Solid State Ionics 1981, 2, 347.
11. Berthier, C.; Gorecki, W.; Minier, M.; Armand, M. B.; Chabagno, J. M.; Rigaud, P. Solid State Ionics 1983, 11, 91.
12. Ferloni, P.; Chiodelli, G.; Magistris, A.; Sanesi, M. Solid State Ionics 1986, 18-19, 265.
13. Robitalle, C. D.; Fauteux, D. J. Electrochem. Soc. 1986, 133, 315.
14. Giles, J. R. M.; Gray, F. M.; MacCallum, J. R.; Vincent, C. A. Polymer 1989, 28, 1977.
15. Nekoomanesh, M. H.; Nagae, S.; Booth, C.; Owen, J. R. J. Electrochem. Soc. 1992, 139, 3046.
16. Tsutsumi, H.; Yamamoto, M.; Morita, M.; Matsuda, Y.; Nakamura, T.; Asai, H. J. Power Sources 1993, 41, 291.
17. Bischoff, H.; Rahnar, D.; Wiesener, K. J. Power Sources 1993, 43-44, 473.
18. Sun, X. G.; Lin, Y. Q.; Ding, L. M.; Jing, X. B. Electrochim. Acta 1996, 41, 1572.
19. Croce, F., Appetecchi, G. B., Persi, L. & Scrosati, B. Nature 1998,394, 456–458.
20. Gray, F. M. Polymer Electrolytes; The Royal Society of Chemistry: Cambridge, 1997.
21. Scrosati, B. (ed.) Applications of Electroactive Polymers; Chapman & Hall: London, 1993.
22. Bruce, P. G. (ed.) Solid State Electrochemistry; Cambridge University Press: Cambridge, 1995.
23. Fenton, D. E., Parker, J. M. & Wright, P. V. Polymer 1973, 14, 589.
24. Armand, M. B., Chabango, J. M. & Duclot, M. J. Fast Ion Transport in Solids; North-Holland: Amsterdam, 1979, 131–136.
25. Berthier, C. et al. Solid State Ionics 1983, 11, 91–95.
26. Ratner, M. A. Polymer Electrolytes Reviews; Elsevier Applied Science: New York, 1987, 173-236.
27. Druger, S. D., Ratner, M. A. & Nitzan, A. Solid State Ionics 1983, 9/10, 1115–1120.
28. Gorecki, W. et al. Solid State Ionics 1988, 28–30, 1018–1022.
29. Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K. & Heeger, A. J. J. Chem. Soc. Chem.Commun. 1977, 578–580.
30. Heeger, A. J. Chem. Soc. 1989, 88, 203–211.
31. Z. Gadjourova, Y. G. Andreev, D. P. Tunstall, P. G. Bruce Nature 2001, 412, 520-523.
32. Wieczorek, W.; Florjanczyk, Z.; Stevens, J. R. Electrochim. Acta 1995, 40, 2251.
33. Gray, F. M. Solid Polymer Electrolytes-Fundamentals and Technological Applications; VCH: Weinheim, Germany, 1991.
34. Scrosati, B.; Neat, R. Reference 1 1996, Chapter 6.
35. Wieczorek, W.; Such, K.; Florjanczyk, Z.; Stevens, J. R. J. Phys. Chem. 1994, 98, 6840.
36. Wieczorek, W.; Such, K.; Chung, S. H.; Stevens, J. R. J. Phys. Chem. 1994, 98, 9047.
37. Selim Arif Sher Shah, Pratyay Basak* and Sunkara V. Manorama J. Phys. Chem. C, 2010, 114 (33), 14281–14289.
38. Zhengcheng Zhang, David Sherlock, Ryan West, and Robert West Macromolecules, 2003, 36 (24), 9176–9180.
39. Joel M. Pollino and Marcus Weck Chem. Soc. Rev. 2005, 34, 193–207.
40. Andrew J. Wilson Soft Matter 2007, 3, 409–425.
41. Stephen Rieth, Christopher Baddeley and Jovica D. Badjic´ Soft Matter 2007, 3, 137–154.
42. Saenger, W. Principles of Nucleic Acid Structures; Springer: Berlin, 1984.
43. Soyfer, V. N.; Potaman, V. N. Triple-Helical Nucleic Acids; Springer: New York, 1995.
44. Binder, W. H.; Zirbs, R. Adv. Polym. Sci. 2007, 1, 207.
45. Mueller, A.; Talbot, F.; Leutwyler, S. J. Am. Chem. Soc. 2002, 124, 14486.
46. Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature 1996, 382, 607.
47. Jain, K. K. Science 2001, 294, 621.
48. Takemoto, K.; Mochizuki, E.; Wada, T.; Inaki, Y. Biomimetic Polym. 1990, 253.
49. Inaki, Y. Prog. Polym. Sci. 1992, 17, 515.
50. Smith, W. T. Prog. Polym. Sci. 1996, 21, 209.
51. Bauerle, P.; Emge, A. Adv. Mater. 1998, 10, 324.
52. Mather, B. D.; Baker, M. B.; Beyer, F. L.; Berg, M. A. G.; Green, M. D.; Long, T. E. Macromolecules 2007, 40, 6834.
53. Khan, A.; Haddleton, D. M.; Hannon, M. J.; Kukulj, D.; Marsh, A. Macromolecules 1999, 32, 6560.
54. Lutz, J. F.; Thuenemann, A. F.; Rurack, K. Macromolecules 2005, 38, 8124.
55. Noro, A.; Nagata, Y.; Takano, A.; Matsushita, Y. Biomacromolecules 2006, 7, 1696.
56. Cheng, C. C.; Huang, C. F.; Yen, Y. C.; Chang, F. C. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 6416.
57. Cheng, C. C.; Yen, Y. C.; Ye, Y. S.; Chang, F. C. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 6388.
58. Trakhtenberg, S.; Warner, J. C.; Nagarajan, R.; Bruno, F. F.; Samuelson, L. A. J. Chem. Mater. 2006, 18, 2873.
59. Saito, K.; Ingalls, L. R.; Lee, J.; Warner, J. C. Chem. Commun. 2007, 24, 2503.
60. Sivakova, S.; Rowan, S. J. Chem. Soc. Rev. 2005, 34, 9.
61. Lin, I. H.; Cheng, C. C.; Yen, Y. C.; Chang, F. C. Macromolecules 2010, 43, 1245.
62. Setlow, R. B. Science 1966, 153, 379.
63. Lamola, A. A.; Mittal, J. P. Science 1966, 154, 1560.
64. Blackburn, G. M.; Davies, R. J. H. J. Chem. Soc. C 1966, 23, 2239.
65. Wang, S. Y. Photochemistry and Photobiology of Nucleic Acids; Academic Press: New York, 1976.
66. Yiping Zhan; Gordon S. R. J. Phys. Chem. B 2000, 104, 6286-6292
67. Wan-Chun Chen; Shiao-Wei Kuo; Chu-Hua Lu; U-Ser Jeng; Feng-Chih Chang Macromolecules 2009, 42, 3580-3590
68. H. Floyd Davis; Yuan T. Lee J. Phys. Chem. 1996, 100, 30.
69. Brown, S. C.; Braun, C. L. J. Phys. Chem. 1991, 95, 511.
70. Smirnov, S. N.; Braun, C. L. J. Phys. Chem. 1994, 98, 1953.
71. Smirnov, S. N.; Braun, C. L. J. Phys. Chem. 1992, 96, 9587.
72. Smirnov, S. N.; Braun, C. L. Chem. Phys. Lett. 1994, 217, 167.
73. Grzeskowiak, K. N.; Smirnov, S. N.; Braun, C. L. J. Phys. Chem. 1994, 98, 5661.
74. C. Desfrançois; V. Periquet; Y. Bouteiller; Schermann J. P. J. Phys. Chem. A 1998, 102, 1274-1278.
75. Dayle M. A. Smith; Johan Smets; Ludwik Adamowicz J. Phys. Chem. A 1999, 103, 5784-5790.
76. Johan Smets; William J. McCarthy; Ludwik Adamowicz J. Phys. Chem. 1996, 100, 14655-14660.
77. Myong Yong Choi; Miller R.E. J. Phys. Chem. A 2007, 111, 2475-2479.
78. Feher, F. J.; Schwab, J. J.; Phillips, S. H. Organometallics 1997, 14, 4452-3.
79. Scott, D. W.J. Am. Chem. Soc. 1946, 68, 356.
80. Feher, F. J.; Budzichowski, T. A. J. Organomet. Chem. 1989, 373, 153-63.
81. Chinnam P.R; Wunder S.L. Chem. Mater. 2011, 23, 5111–5121.
82. Maitra, P.; Wunder, S. L. Chem. Mater. 2002, 14 (11), 4494−4497.
83. Maitra, P.; Wunder, S. L. Electrochem. Solid State Lett. 2004, 7 (4), A88−A92.
84. Zhang, H. J.; Kulkarni, S.; Wunder, S. L. J. Phys. Chem. B 2007,111 (14), 3583−3590.

Chapter 2
1. Ye, Y.S.; Huang, Y.J.; Cheng, C.C.; Chang F.C., Chem. Commun., 2010, 46, 7554-7556.
2. Ye, Y.S.; Yen, Y.C.; Cheng, C.C.; Chen, W.Y.; Tsai, L.T.; Chang, F.C., 2009, 50, 3196-3203.
3. Saikia, D.; Wu, H.Y.; Lin, C.P.; Pan, Y.C.; Fang, J.; Tsai, L.D.; Fey, G.T.K., Polymer 2012, 53, 6008–6020.
4. Murata, K.; Izuchi, S.; Yoshihisa, Y., Electrochim. Acta. 2000, 45, 1501–1508.
5. Croce, F.; Appetecchi, G.B.; Persi, L., Nature, 1998, 394, 456–458.
6. Zhang, H.; Kullarni, S.; Wnder, S.L., J. Electrochem. Soc., 2006, 153, A239–A248.
7. Lin, C.K.; Wu, I.D., Polymer, 2011, 52, 4106–4113.
8. Chiu, C.Y.; Yen, Y.J.; Kuo, S.W.; Chen, H.W.; Chang, F.C., Polymer, 2007, 48, 1329–1342.
9. Pivovar, B.S., Polymer, 2006, 47, 4194–4202.
10. Xue, C.C.; Meador, M.A.B.; Zhu, Z.; Ge, J.J.; Cheng, S.Z.D.; Putthanarat, S., Polymer, 2006, 47, 6149–6155.
11. Xi, J.; Qiu, X.; Zheng, S.; Tang, X., Polymer, 2005, 46, 5702–5706.
12. Rocco, A.M.; Carias, A.D.; Pereira, R.P., Polymer, 2010, 51, 5151–5164.
13. Zardalids, G.; Ioannou, E.; Pispas, S.; Floudas, G., Macromolecules, 2013, 46, 2705–2714.
14. Berthier, C.; Gorecki, W.; Minier, M.; Armand, M.B.; Chabagno, J.M.; Rigaud, P., Solid State Ionics, 1983, 11, 91–95.
15. Chen, H.W.; Chiu, C.Y.; Wu, H.D.; Shen, I.W.; Chang, F.C., Polymer, 2002, 43, 5011–5016.
16. Xia, D.W.; Smid, J., J. Polym. Sci., Polym. Lett. Ed., 1984, 22, 617–621.
17. Li, J.; Khan, I.M., Macromolecules, 1993, 26, 4544–4550.
18. Wieczorek, W.; Such, K.; Zalewska, A.; Raducha, D.; Florjanczyk, Z.; Stevens, J.R., J. Phys. Chem. B, 1998, 102, 352–360.
19. Chen, H.W.; Xu, H.; Huang, C.F.; Chang, F.C., J. Appl. Polym. Sci., 2004, 91, 719–725.
20. Chen, H.W.; Jiang, C.H.; Wu, H.D.; Chang, F.C., J. Appl. Polym. Sci., 2004, 91, 1207–1216.
21. Chiu, C.Y.; Chen, H.W.; Kuo, S.W.; Huang, C.F.; Chang, F.C., Macromolecules, 2004, 37, 8424–8430.
22. Yen, Y.C.; Cheng, C.C.; Kuo, S.W.; Chang, F.C., Macromolecules, 2010, 43, 2634–2637.
23. Sijbesma, R.P.; Meijer, E.W., Curr. Opin. Coll. Inter. Sci., 1999, 4, 24–32.
24. Elemans, J.A.; Rowan, A.E.; Nolte, R.J.M., J. Mater. Chem., 2003, 13, 2661–2670.
25. Whitesides, G.M.; Grzybowski, B., Science, 2002, 295, 2418–2421.
26. Wang, Y.J.; Pan, Y.; Wang, L.; Pang, M.J.; Chen, L., J. Appl. Polym. Sci., 2006, 102, 4269–4275.
27. Xu, W.; Belieres, J.P.; Angell, C.A., Chem. Mater., 2001, 13, 575–580.
28. Wang, J.H.; Altukhov, O.; Cheng, C.C.; Chang, F.C.; Kuo, S.W., Soft Matt., 2013, 9, 5196-5206.
29. Eisenberg, A.; Rinaudo, M., Polym. Bull., 1990, 24, 671.
30. Kim, J.H.; Min, B.R.; Kim, C.K.; Won, J.; Kang, Y.S., Macromolecules, 2002, 35, 5250–5255.
31. Kim, J.H.; Min, B.R.; Won, J.; Kang, Y.S., J. Phys. Chem. B, 2003, 107, 5901–5905.
32. Koh, J.H.; Park, J.T.; Koh, J.K.; Kim, J.H., J. Polym. Sci. Part B: Polym. Phys., 2009, 47, 793–798.
33. Kuo, S.W.; Wu, C.H.; Chang, F.C., Macromolecules, 2004, 37, 192–200.
34. Carlsson, P.; Mattsson, B.; Swenson, J.; Borjesson, L.; Torell, L.M.; McGreevy, R.L.; Howell, W.S., Electrochim. Acta., 1998, 43, 1545–1550.
35. Deng, Z.; Irish, D.E., Can. J. Chem., 1991, 69, 1766–1773.
36. Meyer, F.; Raquez, J. M.; Verge, P.; de Arenaze, I. M.; Coto, B.; Voort, P. V. D.; Meaurio, E.; Dervaux, B.; Sarasua, J. R.; Prez, F. D.; Dobois, P., Biomacromolecules, 2011, 12, 4086-4094.
37. Szekrenyes, Z.; Kamara, K.; Tarczay, G.; Pallas, A.L.; Marangoni, T.; Prato, M.; Bonifazi, D.; Bjork, J.; Hanke, F.; Persson, M., J. Phys. Chem. B, 2012, 116, 4626–4633.
38. Fu, R.; Ma, Z.; Zheng, J.P.; Au, G.; Plichta, E.J.; Ye, C., J. Phys. Chem. B, 2003, 107, 9730–9735.
39. Wang, H.L.; Kao, H.M.; Wen, T.C., Macromolecules, 2000, 33, 6910–6912.
40. Dai, Y.; Wang, Y.; Greenbaum, S.G.; Bajue, S.A.; Golodnitsky, D.; Ardel, G.; Strauss, E.; Peled, E., Electrochim. Acta., 1998, 43, 1557–1561.

Chapter 3
1. J. M. Plooino, and M. Weck, Chem. Soc. Rev., 2005, 34, 193-207.
2. C. Wang, S. Yang, X. Yu, J. X. Zheng, J. Ma, J. Xu, and M. Zhu, Soft Matter., 2012, 8, 10307-10313.
3. M. C. Stuparu, A. Khan, and C. J. Hawker, Polym. Chem., 2012, 3, 3033-3044.
4. Y. C. Wu, and S. W. Kuo, J. Mater. Chem., 2012, 22, 2982-2991.
5. W. H. Binder, and R. Zirbs, Adv. Polym. Sci., 2007, 201, 1-78.
6. A. Muller, F. Talbot, S. Leutwyler, J. Am. Chem. Soc., 2002, 124, 14486-14494.
7. S. W. Kuo, and S. T. Tsai, Macromolecules, 2009, 42, 4701-4711.
8. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, Nature, 1996, 382, 607-609.
9. K. K. Jain, Science, 2001, 294, 621-623.
10. S. W. Kuo, Polym. Inter., 2009, 58, 455-464.
11. Y. Inaki, Prog. Polym. Sci., 1992, 17, 515-570.
12. W. T. Smith, Prog. Polym. Sci., 1996, 21, 209-253.
13. P. Bauerle, and A. Emge, Adv. Mater., 1998, 10, 324-330.
14. A. Khan, D. M. Haddleton, M. J. Hannon, D. Kukulj, and A. Marsh, Macromolecules, 1999, 32, 6560-6564.
15. Y. C. Wu, Y. S. Wu, S. W. Kuo, Macromol. Chem. Phys., 2013, 214, 563-571..
16. A. Bertrand, F. Lortie, J. Bernard, Macromol. Rapid Commun., 2012, 33, 2062-2091.
17. Y. C. Wu, and S. W. Kuo, Polym. Chem., 2012, 3, 3100-3111.
18. I. H. Lin, C. C. Cheng, Y. C. Yen, and F. C. Chang, Macromolecules, 2010, 43, 1245-1252.
19. S. Trakhtenberg, J. C. Warner, R. Nagarajian, F. F. Bruno, and L. A. J. Samuelson, Chem. Mater., 2006, 18, 2873-2878.
20. K. Saito, L. R. Ingalls, J. Lee, and J. C. Warner, Chem. Commun., 2007, 24, 2503-2505.
21. S. W. Kuo and F. C. Chang, Prog. Polym. Sci., 2011, 36, 1649-1696.
22. Y. Li, X. H. Dong, K. Guo, Z. Wang, Z. C. Wesdemiotis, R. P. Quirk, W. Zhang, S. Z. D. Cheng, ACS Macro Lett., 2012, 1, 834-839
23. Zhang, A. H. E. Muller, Macromolecules., 2010, 43, 3148-3152.
24. J. L. He, K. Yue, Y. Q. Liu, X. F. Yu, P. H. Ni, K. A. Cavicchi, R. P. Quirk, E. Q. Chen, S. Z. D. Cheng, and W. B. Zhang, Polym. Chem., 2012, 3, 2112-2120.
25. E. Gungor, C. Bilir, H. Durmaz, G. Hizal, U. Tunca, J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 5947-5953.
26. K. Pielichowaski, J. Niuguna, B. Janowski and J. Pielichowski, Adv. Polym. Sci., 2006, 201, 225-296.
27. S. W. Kuo, H. F. Lee, W. J. Huang, K. U. Jeong and F. C. Chang, Macromolecules, 2009, 42, 1619-1626.
28. Y. C. Lin, and S. W. Kuo, Polym. Chem., 2012, 3, 162-171.
29. E. Jeoung, J. B. Carroll and V. M. Rotello, Chem. Commun., 2002, 1510-1511.
30. J. B. Carroll, A. J. Waddon H., Nakade and V. M. Rotello, Macromolecules, 2003, 36, 6289-6291.
31. C. C. Cheng, Y. C. Yen and F. C. Chang, Macromol. Rapid Commun., 2011, 32, 927-932.
32. Y. C. Lin, and S. W. Kuo, Polym. Chem., 2012, 3, 882-891.
33. Y. Li, W. B. Zhang, I. F. Hsieh, G. Zhang, Y. Cao, X. Li, C. Wesdemiotis, B. Lotz, H. Xiong, and S. Z. D. Cheng, J. Am. Chem. Soc., 2011, 133, 10712-10715.
34. J. Xu, X. Li, C. M. Cho, C. L. Toh, L. Shen, K. Y. Mya, X. Lu, C. He, J. Mater. Chem., 2009, 19, 4740-4745.
35. Y. C. Sheen, C. H. Lu, C. F. Huang, S. W. Kuo, and F. C. Chang, Polymer, 2008, 49, 4017-4024.
36. W. H. Hu, K. W. Huang, and S. W. Kuo, Polym. Chem., 2012, 3, 1546-1554.
37. L. Fielding, Tetrahedron, 2000, 56, 6151-6170.
38. N. Mesplet, P. Morin, and J. P. Ribet, J. Pharm. Biopharm., 2005, 59, 523-526.
39. A. S. Karikari, B. D. Mather, and T. E. Long, Biomacromolecules, 2007, 8, 302-308.
40. A. J. Wilson, Soft Matter, 2007, 8, 409-425.
41. Z. Sideratou, D. Tsiourvas, C. M. Paleos, E. Peppas, J. Anastassopoulou, and T. Theophanides. J. Mol. Strucutre, 1999, 484, 91-101.
42. R. S. Shih, C. H. Lu, S. W. Kuo, and F. C. Chang, J. Phys. Chem. C, 2010, 114, 12855-12862.
43. S. L. Tripp, S. V. Pusztay, A. E. Ribbe, and A. Wei, J. Am. Chem. Soc., 2002, 124, 7914-7915.
44. P. C. Ohara, and W. M. Gelbart, Langmuir, 1998, 14, 3418-3424.

Chapter 4
1. H. A. Klok and S. Lecommandoux, Adv. Mater., 2001, 13, 1217–1229.
2. Y. Mai and A. Eisenberg, Chem. Soc. Rev., 2012, 41, 5969–5985.
3. G. J. A. A. Soler-Illia and O. Azzaroni, Chem. Soc. Rev., 2011, 40, 1107–1150.
4. Y. Deng, J. Wei, Z. Sun and D. Zhao, Chem. Soc. Rev., 2013, 42, 4054–4070.
5. W. Li and D. Zhao, Chem. Commun., 2013, 49, 943–946.
6. D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Science, 1998, 279, 548–552.
7. D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka and G. D. Stucky, J. Am. Chem. Soc., 1998, 120, 6024–6036.
8. M. Kruk, M. Jaroniec, C. H. Ko and R. Ryoo, Chem. Mater., 2000, 12, 1961–1968.
9. K. C. W. Wu, X. Jiang and Y. Yamauchi, J. Mater. Chem., 2011, 21, 8934–8939.
10. G. Soler-Illia, A. Louis and C. Sanchez, Chem. Mater., 2002, 14, 750–759.
11. D. Grosso, C. Boissiere, B. Smarsly, T. Brezesinski, N. Pinna, P. A. Albouy, H. Amenitsch, M. Antonietti and C. Sanchez, Nature Mater., 2004, 3, 787–792.
12. C. J. Brinker, Y. F. Lu, A. Sellinger and H. Y. Fan, Adv. Mater.,1999, 11, 579–585.
13. Y. F. Lu, H. Y. Fan, A. Stump, T. L. Ward, T. Rieker and C. J. Brinker, Nature, 1999, 398, 223–226.
14. D. Grosso, F. Cagnol, G. Soler-Illia, E. L. Crepaldi, H. Amenitsch, A. Brunet-Bruneau, A. Bourgeois and C. Sanchez, Adv. Funct. Mater., 2004, 14, 309–322.
15. Y. Deng, T. Yu, Y. Wan, Y. Shi, Y. Meng, D. Gu, L. Zhang, Y. Huang, C. Liu, X. Wu and D. Zhao, J. Am. Chem. Soc., 2007, 129, 1690–1697.
16. Y. Deng, J. Liu, C. Liu, D. Gu, Z. Sun, J. Wei, J. Zhang, L. Zhang, B. Tu and D. Zhao, Chem. Mater., 2008, 20, 7281–7286.
17. E. Bloch, P. L. Llwewllyn, T. Phan, D. Bertin and V. Hornebecq, Chem. Mater., 2009, 21, 48–55.
18. G. Ma, X. Yan, Y. Li, L. Xiao, Z. Huang, Y. Lu and J. Fan, J. Am. Chem. Soc., 2010, 132, 9596–9597.
19. J. Wei, Y. Deng, J. Zhang, Z. Sun, B. Tu and D. Zhao, Solid State Sci., 2011, 13, 784–792.
20. Y. Deng, C. Liu, D. Gu, T. Yu, B. Tu and D. Zhao, J. Mater. Chem., 2008, 18, 91–97.
21. B. C. Garcia, M. Kamperman, R. Ulrich, A. Jain, S. M. Gruner and U. Wiesner, Chem. Mater., 2009, 21, 5397–5405.
22. S. W. Kuo, C. L. Lin and F. C. Chang, Macromolecules, 2002, 35, 278–285.
23. J. G. Li and S. W. Kuo, RSC Adv., 2011, 1, 1822–1833.
24. J. G. Li, Y. D. Lin and S. W. Kuo, Macromolecules, 2011, 44, 9295–9309.
25. J. G. Li, R. B. Lin and S. W. Kuo, Macromol. Rapid Commun., 2012, 33, 678–682.
26. J. G. Li, C. Y. Chuang and S. W. Kuo, J. Mater. Chem., 2012, 22, 18583–18595.
27. J. G. Li, Y. H. Chang, Y. S. Lin and S. W. Kuo, RSC Adv., 2012, 2, 12973–12982.
28. W. C. Chu, J. G. Li and S. W. Kuo, RSC Adv., 2013, 3, 6485–6498.
29. J. G. Li, R. B. Lin and S. W. Kuo, RSC Adv., 2013, 3, 17411–17423.
30. J. G. Li, W. C. Chu, U. S. Jeng and S. W. Kuo, Macromol. Chem. Phys., 2013, 214, 2115–2123.
31. W. C. Chu, S. F. Chiang, J. G. Li and S. W. Kuo, RSC Adv., 2014, 4, 784–793.
32. C. C. Liu, J. G. Li and S. W. Kuo, RSC Adv., 2014, 4, 20262–20272.
33. C. C. Liu, J. G. Li, W. C. Chu and S. W. Kuo, Macromolecules, 2014, 47, 6389–6400.
34. W. C. Chu, C. X. Lin and S. W. Kuo, RSC Adv., 2014, 4, 61012–61021.
35. J. G. Li, W. C. Chu, C. W. Tu and S. W. Kuo, J. Nanosci. Nanotechnol., 2013, 13, 2495–2506.
36. J. H. Chang, K. J. Kim and Y. K. Shin, Bull. Korean Chem. Soc., 2004, 25, 351–356.
37. J. H. Chang, C. H. Shim, K. J. Kim and B. S. Bae, J. Ind. Eng. Chem., 2005, 11, 471–474.
38. B. Nandan, J. Y. Hsu and H. L. Chen, J. Macromol. Sci., Part C: Polym. Rev., 2006, 46, 143–172.
39. K. Rezwan, Q. Z. Chen, J. J. Blaker and A. R. Boccaccini, Biomaterials, 2006, 27, 3413–3431.
40. R. V. Castillo, A. J. Muller, J. M. Raquez and P. Dubois, Macromolecules, 2010, 43, 4149–4160.
41. Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan and J. R. Gong, J. Am. Chem. Soc., 2011, 133, 10878–10884.

Chapter 5
1. D. Batra, S. Vogt, P. D. Laible, and M. A. Firestone, Langmuir, 2005, 21 (23), 10301–10306.
2. C.C. Feng, F.Y. Wang, Y.J Dang, Z.A. Xu, H.J. Yu, and W. Zhang, Langmuir, 2017, 33 (13), 3287–3295.
3. L. Lauber, J. Depoorter, T. Nicolai, C. Chassenieux, and O. Colombani, Macromolecules, 2017, 50 (20), 8178–8184.
4. T. Wen, H.F. Wang, M.C. Li, and R.M. Ho, Acc. Chem. Res., 2017, 50 (4), 1011–1021.
5. H. A. Klok and S. Lecommandoux, Adv. Mater., 2001, 13, 1217–1229.
6. Y. Mai and A. Eisenberg, Chem. Soc. Rev., 2012, 41, 5969–5985.
7. G. J. A. A. Soler-Illia and O. Azzaroni, Chem. Soc. Rev., 2011, 40, 1107–1150.
8. Y. Deng, J. Wei, Z. Sun and D. Zhao, Chem. Soc. Rev., 2013, 42, 4054–4070.
9. W. Li and D. Zhao, Chem. Commun., 2013, 49, 943–946.
10. D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Science, 1998, 279, 548–552.
11. D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka and G. D. Stucky, J. Am. Chem. Soc., 1998, 120, 6024–6036.
12. M. Kruk, M. Jaroniec, C. H. Ko and R. Ryoo, Chem. Mater., 2000, 12, 1961–1968.
13. G. Soler-Illia, A. Louis and C. Sanchez, Chem. Mater., 2002, 14, 750–759.
14. D. Grosso, C. Boissiere, B. Smarsly, T. Brezesinski, N. Pinna, P. A. Albouy, H. Amenitsch, M. Antonietti and C. Sanchez, Nature Mater., 2004, 3, 787–792.
15. C. J. Brinker, Y. F. Lu, A. Sellinger and H. Y. Fan, Adv. Mater.,1999, 11, 579–585.
16. Y. F. Lu, H. Y. Fan, A. Stump, T. L. Ward, T. Rieker and C. J. Brinker, Nature, 1999, 398, 223–226.
17. D. Grosso, F. Cagnol, G. Soler-Illia, E. L. Crepaldi, H. Amenitsch, A. Brunet-Bruneau, A. Bourgeois and C. Sanchez, Adv. Funct. Mater., 2004, 14, 309–322.
18. Y. Deng, T. Yu, Y. Wan, Y. Shi, Y. Meng, D. Gu, L. Zhang, Y. Huang, C. Liu, X. Wu and D. Zhao, J. Am. Chem. Soc., 2007, 129, 1690–1697.
19. Y. Deng, J. Liu, C. Liu, D. Gu, Z. Sun, J. Wei, J. Zhang, L. Zhang, B. Tu and D. Zhao, Chem. Mater., 2008, 20, 7281–7286.
20. E. Bloch, P. L. Llwewllyn, T. Phan, D. Bertin and V. Hornebecq, Chem. Mater., 2009, 21, 48–55.
21. G. Ma, X. Yan, Y. Li, L. Xiao, Z. Huang, Y. Lu and J. Fan, J. Am. Chem. Soc., 2010, 132, 9596–9597.
22. J. Wei, Y. Deng, J. Zhang, Z. Sun, B. Tu and D. Zhao, Solid State Sci., 2011, 13, 784–792.
23. Y. Deng, C. Liu, D. Gu, T. Yu, B. Tu and D. Zhao, J. Mater. Chem., 2008, 18, 91–97.
24. B. C. Garcia, M. Kamperman, R. Ulrich, A. Jain, S. M. Gruner and U. Wiesner, Chem. Mater., 2009, 21, 5397–5405.
25. S. W. Kuo, C. L. Lin and F. C. Chang, Macromolecules, 2002, 35, 278–285.
26. J. G. Li and S. W. Kuo, RSC Adv., 2011, 1, 1822–1833.
27. J. G. Li, Y. D. Lin and S. W. Kuo, Macromolecules, 2011, 44, 9295–9309.
28. J. G. Li, R. B. Lin and S. W. Kuo, Macromol. Rapid Commun., 2012, 33, 678–682.
29. J. G. Li, C. Y. Chuang and S. W. Kuo, J. Mater. Chem., 2012, 22, 18583–18595.
30. J. G. Li, Y. H. Chang, Y. S. Lin and S. W. Kuo, RSC Adv., 2012, 2, 12973–12982.
31. W. C. Chu, J. G. Li and S. W. Kuo, RSC Adv., 2013, 3, 6485–6498.
32. J. G. Li, R. B. Lin and S. W. Kuo, RSC Adv., 2013, 3, 17411–17423.
33. J. G. Li, W. C. Chu, U. S. Jeng and S. W. Kuo, Macromol. Chem. Phys. 2013, 214, 2115–2123.
34. W. C. Chu, S. F. Chiang, J. G. Li and S. W. Kuo, RSC Adv., 2014, 4, 784–793.
35. C. C. Liu, J. G. Li and S. W. Kuo, RSC Adv., 2014, 4, 20262–20272.
36. C. C. Liu, J. G. Li, W. C. Chu and S. W. Kuo, Macromolecules, 2014, 47, 6389–6400.
37. W. C. Chu, C. X. Lin and S. W. Kuo, RSC Adv., 2014, 4, 61012–61021.
38. J. G. Li, W. C. Chu, C. W. Tu and S. W. Kuo, J. Nanosci. Nanotechnol. 2013, 13, 2495–2506.
39. J. H. Chang, K. J. Kim and Y. K. Shin, Bull. Korean Chem. Soc. 2004, 25, 351–356.
40. J. H. Chang, C. H. Shim, K. J. Kim and B. S. Bae, J. Ind. Eng. Chem. 2005, 11, 471–474.
41. B. Nandan, J. Y. Hsu and H. L. Chen, J. Macromol. Sci., Part C: Polym. Rev., 2006, 46, 143–172.
42. K. Rezwan, Q. Z. Chen, J. J. Blaker and A. R. Boccaccini, Biomaterials, 2006, 27, 3413–3431.
43. O. Altukhov and S.W. Kuo, RSC Adv., 2015, 5, 22625.
44. J.G. Li, W.C. Chu and S.W. Kuo, Nanomaterials, 2015, 5, 1087-1101
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code