博碩士論文 etd-1029113-080753 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 楊欽琮(Chin-Tsung Yang) 電子郵件信箱 slightwing@gmail.com
畢業系所 資訊管理學系研究所(Information Management)
畢業學位 碩士(Master) 畢業時期 102學年第1學期
論文名稱(中) 網路口碑對行動應用軟體銷售排名之影響—以Apple App Store之意見分析為例
論文名稱(英) The Influence of eWOM on the Sales Ranking of Mobile Software: An Opinion Analysis of the Apple App Store
檔案
  • etd-1029113-080753.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    紙本論文:3 年後公開 (2016-11-29 公開)

    電子論文:使用者自訂權限:校內 3 年後、校外 3 年後公開

    論文語文/頁數 中文/99
    統計 本論文已被瀏覽 5382 次,被下載 1004 次
    摘要(中) Apple App Store模式的成功不只改寫了全球行動通訊應用軟體的商業模式,更推動了資通訊前瞻性與新興產業策略性的發展。然而在過去的研究中,卻少有學者關注行動應用軟體商店驚人的銷售績效背後,到底受到哪些類型的網路口碑或變數的影響,而對於造成改變的原因亦少有學者去作深入之探究。
      本研究是網路口碑對於行動應用軟體銷售指標的實證研究、運用文字探勘與意見分析技術配合詞組探索規則(Heuristic Rule)量化網路口碑。本研究採用市場品牌領導者Apple App Store台灣地區的官方評論系統和付費銷售排行榜作為研究對象,以台灣地區2011年整年度銷售最好的十款行動應用軟體每個星期日當天的排名變化,再結合網路口碑、資訊系統成功模式、文字探勘與意見分析,提出一個整合性的架構,探討台灣地區的智慧型手機用戶在購買行動應用軟體時,是否會受不同型態的網路口碑(跟據最新十篇的線上文字評論及十篇評論之平均評等)、產品價格而產生變動。研究發現與結論如下列所示;
    1. 整體而言,本研究所提出的文字探勘方法能夠有效的預測消費者口碑對銷售排名的影響。而「系統性文字評論之語意分數」顯著的影響2010-2011年間Apple App Store付費排行上銷售最好的前十大行動應用軟體的銷售表現。
    2. 將十款行動應用軟體做更進一步分群後發現:對於「功利型行動應用軟體」來說,「系統性文字評論之語意分數」和「產品價格」均能顯著的影響其排行榜上的銷售指標。
    3. 對於「享樂型行動應用軟體」來說,「系統性文字評論之語意分數」、「服務性文字評論之語意分數」、「平均評等」和「產品價格」均顯著的影響其排行榜上的銷售指標,驗證了網路口碑中三種不同類型的線上文字評論在實務上對於不同產品的銷售指標(Apple App Store付費排行上的名次)有不同程度的顯著影響力。
    關鍵字: 行動應用軟體、網路口碑、文字探勘、意見分析、詞組探索規則、語意分數
    摘要(英) The App Store's success has not only changed the business model of mobile software, but also expedited the development of ICT and newly developed industries. Eletronic word of mouth (e-WOM) has become an influential power in consumer decision making. However, not much previous research has examined the effect of eWOM on sales performance of mobile App.
    This research is an empirical research that is focused on the issue of how eWOM affect the sales performance of mobile App. I used text mining and heuristic rules to classify and analyze the mood of the eWOMs and empirical examined their effects. The eWOM and sales ranking of the top ten Apple’s App’s in Taiwan in 2011 were retrieved for this research. Each eWOM was classified into system and service-related comments (based on the information system success model). These comments were then classified into their emotional scale. The top ten App’s were classified into utilization and hedonic Apps’. The data were then combined with price and the average ranking to examine their effects on the sales ranking. Major findings include the following:
     
    1. Overall, our proposed method for analyzing eWOM can effectively predict the sales ranking of an App. The eWOM score of system quality had significant effect on the sales ranking of the top ten App in the Apple’s App Store in 2011.

    2. When the top ten App’s were divided into utilization and hedonic groups, we found that the score of system quality and price had significant effect on the sales ranking.
    3. For hedonic App’s, all four factors (system quality score, service quality score, average rating, and price) had significant effect on the sales ranking.
    Keywords: App Store, mobile software, eWOMs, text mining, heuristic rules
    關鍵字(中)
  • 行動應用軟體
  • 語意分數
  • 詞組探索規則
  • 意見分析
  • 文字探勘
  • 網路口碑
  • 關鍵字(英)
  • App Store
  • mobile software
  • eWOMs
  • text mining
  • heuristic rules
  • 論文目次 第一章、 緒論 1
    第一節、 研究背景 1
    第二節、 研究動機 2
    第三節、 研究問題與目的 5
    第四節、 研究流程與步驟 6
    第五節、 論文架構 8
    第二章、 文獻探討 9
    第一節、 行動應用軟體發展與銷售平台的排名 9
    壹、 行動應用軟體之發展 9
    貳、 行動應用軟體的銷售平台與Apple App Store排行榜 10
    第二節、 各種型態的口碑對銷售績效的影響 14
    壹、 傳統口碑(WOM)的發展與對銷售績效的影響 14
    貳、 網路口碑(eWOM)的發展與對銷售面的影響 15
    第三節、 網路口碑的類型 19
    壹、 線上文字評論(Online Reviews) 19
    貳、 平均評等(Average Rating) 21
    第四節、 文字探勘與意見分析 22
    壹、 文字探勘 22
    貳、 意見分析(opinion analysis)與正負向種子辭彙建立 23
    參、 情感語意分數之計算 26
    第五節、 線上文字評論的訴求主題 26
    壹、 網路口碑中訴求主題的傳統分類 27
    貳、 資訊系統成功模式 28
    第六節、 產品價格變動對銷售指標的影響 29
    第七節、 行動應用軟體的產品分類 30
    第三章、 研究架構與方法 32
    第一節、 研究架構 32
    第二節、 研究模型 38
    第三節、 研究對象 39
    第四節、 研究假說 39
    第五節、 研究方法 39
    第四章、 意見分析的方法 41
    壹、 資料蒐集與數據編碼 41
    貳、 網路文字評論蒐集與相關程式撰寫 42
    參、 資料前置處理、中文斷詞與詞性標註 46
    肆、 情感特徵詞篩選與建立詞性組探索規則 48
    伍、 建立正負向種子詞彙與線上文字評論的訴求主題 52
    陸、 透過正負向詞彙計算語義分數 65
    第五章、 研究模式驗證 67
    第一節、 樣本特性分析 67
    第二節、 研究假說之檢定 68
    第六章、 結論與建議 73
    第一節、 研究發現與結論 73
    壹、 學術面 75
    貳、 實務面 76
    參、 研究限制與展望 76
    參考文獻 78
    參考文獻 英文文獻
    1. Amblee, N. and Tung, B. (2008). “Can Brand Reputation Improve the Odds of Being Reviewed On-Line,” International Journal of Electronic Commerce, Vol. 12 (3), pp. 11-28.
    2. Anderson, E. W. (1998). “Customer satisfaction and word of mouth,” Journal of Service Research, Vol. 1(1), pp. 5–17.
    3. Arndt, J. (1967). “The Role of Product-related Conversations in the Diffusion of a New Product,” Journal of Marketing Research, Vol. 4, pp. 291-295.
    4. Awad, N. F. and Zhang, J. (2006). “A framework for evaluating organizational involvement in online ratings communities,” In Proceedings of the 1st Midwest United States Association for Information Systems Conference (MWAIS–01), Grand Rapids, Michigan.
    5. Axel, G. and Hautsch, N. (2009). “Quantifying High-Frequency Market Reactions to Real-Time News Sentiment Announcements,” SFB 649 Discussion Paper 06.
    6. Arndt, J. (1967a). “Role of Produce-Related Conversations in the Diffusion of a New Produce,” Journal of Marketing Research, Vol. 4, pp. 291-295.
    7. Arndt, J. (1967b). “Word of Mouth Advertising: Monograph,” 1st Eddition, New York: Advertising Research Foundation.
    8. Babin, B. J., Lee, Y. K., Kim, E. J., and Griffin, M. (2005). “Modeling Consumer Satisfaction and Word-of-Mouth: Restaurant Patronage in Korea,” Journal of Services Marketing, Vol. 19 (3), pp. 133-139.
    9. Balasubramanian, S. and Mahajan, V. (2001). “The Economic Leverage of the Virtual Community. International,” Journal of Electronic Commer, Vol. 5, pp. 103-138.
    10. Basuroy. S., Chatterjee, S. and Ravid, S. (2003). “How Critical Are Critical Reviews? The Box Office Effects of Film Critics, Star Power, and Budgets,” Journal of Marketing, Vol. 67, pp. 103-117.
    11. Behrouz A. F. (2007). “Data Communications and Networking,” 4th Edition, New York, pp. 552-562.
    12. Bing, L. and Wee, L. (2002). “Learning with Positive and Unlabeled Examples using Weighted Logistic Regression.” Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), pp.7-18.
    13. Brooks, J.r. and Robert, C. (1957). “Word-of-Mouth Advertising in Selling New Products,” Journal of Marketing, Vol. 22 (2), pp. 154-161.
    14. Brown, J. J. and Reingen, P. H. (1987). “Social Ties and Word-of-Mouth Referral Behavior,” Journal of Consumer Research, Vol. 14(3), pp. 350-362.
    15. Barry, C.A. and Roberts, E.B. (1985), “Entering New Business: Selecting Strategy for Success,” Sloan Management Review, Vol. 26, pp.3-17.
    16. Brookshear, J.G. (2011). “Computer Science: An Overview,” 11th Edition, New York, pp. 5-10.
    17. Buttle, F. A. (1998). “Word of mouth: Understanding and managing referral marketing,” Journal of Strategic Marketing, Vol. 6(3), pp. 241–254.
    18. Bharati, P. and Chaudhury, A. (2004). “An Empirical Investigation of Decision-Making Satisfaction in Web-Based Decision Support Systems”, Decision Support Systems, Vol. 37(2), pp. 187-197.
    19. Babin, B. J., Darden, W. R. and Griffin, M. (1994). “Work and/or Fun: Measuring Hedonic and Utili- tarian Shopping Value,” Journal of Consumer Research, Vol. 20(4), pp.644-656.
    20. Bailey, J.E. and Pearson, S.W. (1983). “Development of a Tool for Measuring andAnalyzing Computer User Satisfaction,” Management Science, Vol. 29(5), pp. 530- 545.
    21. Brook, R. A. (1987). “Product/Consumption-Based Affective Responses and Postpurchase Processes,” Journal of Marketing Research, Vol. 24, pp. 258-270.
    22. Brown, J. J. and Reingen, P. H. (1987). “Social t ies and w ord - of - m outh r eferral behavior,” Journal of Consumer Research, Vol. 14(3), pp. 350 – 362.
    23. Buttle, F. A. (1998). “Word of m outh: Understanding and m anaging referral m arketing,” Journal of Strategic Marketing, Vol. 6 (3), pp. 241 – 254.
    24. Cunningham, S. M. (1966), “In Raymond M. Hass (Ed.). Science,” Technology and Marketing. Chicago: American Marketing Assocation.
    25. Chan, W.S. (2003). “Stock price reaction to news and no-news: drift and reversal after headlines,” Journal of Financial Economics, Vol. 70, pp. 223–260.
    26. Chen, Y. and Mengze, S. (2001). “The Design and Implications of Customer Recommendation Programs,” Working Paper, pp. 1-33.
    27. Chen, M. and Singh, J. P. (2001). “Computing and using reputations for internet ratings,” In Proceedings of the 3rd ACM Conference on Electronic Commerce(EC 01), Tampa, Florida, USA.
    28. Chevalier, J. A. and Mayzlin, D. (2006). “The Effect of Word of Mouth on Sales: Online Book Reviews,” Journal of Marketing Research, Vol. 43(3), pp. 345-354.
    29. Cheung, C. M. K., Lee, M, K.O. and Neil, R. (2008). “The Impact of Electronic Word-of-Mouth,” Internet Research, Vol 18 (3), pp. 229-247.
    30. Clemons, E. K., Gao, G. G., and Hitt, L. M. (2006). “When online reviews meet hyperdifferentiation: A study of the craft beer industry,” Journal of Management Information Systems, 23(2), pp. 149–171.
    31. ComScore andthe Kelsey group, “Online consumer-generated reviews have significant impact on offline purchase behavior,” Press Release, November 2007.
    32. Charles, D. Z. (1985). “Quality: Key to Service Productivity,” Quality Progress, pp. 32-35.
    33. Christiansen, T. and Tax, S. (2000). “Measuring Word of Mouth: the Questions of. Who and When? ” Journal of Marketing Communications, Vol. 6 (3), pp.185-199.
    34. Dave, K., Lawrence, S. and Pennock, D.M. (2003). “Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews,”  Proceedings of the Twelfth International World Wide Web Conference, pp. 519–528.
    35. Davis, A. and Khazanchi, D. (2008). “An empirical study of online word of mouth as a predictor for multi-product category e-commerce sales,” Electronic Markets, Vol. 18(2), pp. 130~141.
    36. Day, G. S. (1971). “Attitude Change, Media and Word of Mouth,” Journal of Advertising Research, Vol. 11(6), pp. 31-40.
    37. Demers, E.and Vega, C. (2011). “Linguistic tone in earnings announcements: News or Noise?” Working paper, International Finance Discussion Papers, Board of Governors of the Federal Reserve System, pp. 951.
    38. Dellarocas, C. (2003). “The digitization of word of mouth: Promise and challenges of online feedback mechanisms,” Management Science, Vol. 49(10), pp. 1407.
    39. Dellarocas, C. and Narayan, R. (2006). “A Statistical Measure of a Population’s Propensity to Engage in Post-Purchase Online Word-of-Mouth,” Statistical Science, Vol. 21(2), pp. 277-285
    40. Dichter, Ernest. (1966). “How Word-of-Mouth Advertising Works,” Harvard Business Review, Vol. 44(6), pp. 147-166.
    41. Dorre, J., Gerstl, P. and Seiffert, R. (1999). “Text Mining: Finding Nuggets in Mountains of Textual Data,” Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.398-401.
    42. DeLone, W. H., and McLean, E. R. (1992). “Information System Success: The Quest for the Dependent Variable,” Information Systems Research , pp.60-95.
    43. Demers, E., Clara, V. and Demers, E. (2010). "Soft Information in Earnings Announcements: News or Noise?” INSEAD Working Paper.
    44. Dodds, W. B. and Grewal, D. (1991). “Effect of Price, Brand and Store Information on Buyer’s Procduct Evaluation,” Journal of Marketing Research, Vol. 28(3), pp.307-319.
    45. Engelberg J. E. and Christopher A. P. (2011. “The Causal Impact of Media in Financial Markets,” The Journal of Finance, Vol. 91, pp. 1.
    46. Engel J. F., Blackwell R. D. and Miniard P. W. (1995). “Consumer Behavior,” Chicago: Dryden Press.
    47. Engel, J. F., Kegerreis, R. J. and Blackwell, R. D. (1969). “Word-of-Mouth Communication by the Innovator,” Journal of Marketing, Vol. 33(3), pp. 15-19.
    48. Farris, P. and Quelch, J. (1987). “In Defense of Price Promotion.” Sloan Management Review, Vol. 29, pp. 63– 69.
    49. Gleb, B. D. and Sundaram, S. (2002). “Adapting to Word of Mouse,” Business Horizons, Vol. 45 (4), pp. 21-26.
    50. Grewal, D., Gotlieb, J. and Marmorstein, H. (1994). “The Moderating Effects of Message Framing and Source Credibility on the Price-perceived Risk Relationship,” Journal of Consumer Research, pp. 145-153.
    51. Godes, D. and D. Mayzlin. (2004). “Using Online Conversations to Study Word-of-Mouth Communication,” Marketing Science, Vol. 23 (4), pp. 545-560.
    52. Gwinner, K. P. and Gremler, D. D. (2002). “Understanding Relationship Marketing Outcomes-An Integration of Relational Benefits and Relationship Quality,” Journal of Service Research Vol. 4(3), pp. 230-247
    53. Godes, D. and Dina, M. (2004). “Using Online Conversations to Study Word-of-Mouth Communication,” Marketing Science, Vol. 23(4), pp. 545–560.
    54. Gardener, Elizabeth, and Trivedi, M. (1998). “A Communications Framework to Evaluate Sales Promotion Strategies,” Journal of Advertising Research, pp. 67-71.
    55. Harrison-Walker, L. J. (2001). “E-complaining: a content analysis of an Internet complaint forum,” Journal of Services Marketing, Vol. 15(5), pp. 397-412
    56. Harrison-Walker, Jean. L. (2001). “The Measurement of Word-of-Mouth Communication and an Investigation of Service Quality and Customer Commitment as Potential. Antecedents,” Journal of Service Research, Vol. 4 (1), pp. 60-75.
    57. Hennig-Thurau, T., Gwinner, K. P., Walsh, G., and Gremler, D. D. (2004),”Electronic Word-of-Mouth Via Consumer-Opinion Platforms: What Motivates Consumers to Articulate Themselves on the Internet,” Journal of Interactive Marketing, Vol. 18(1), pp. 38-52.
    58. Hennig-Thurau, T., Gwinner. K. P. and Gremler. D. D. (2002). “Understanding Relationship Marketing Outcomes-An Integration of Relational Benefits and Relationship Quality,” Journal of Service Research 4(3), Feb, pp. 230-247.
    59. Hennig-Thurau, T., Gwinner, K. P., and Gremler, D. D. (2004). “Electronic Word-of-mouth via Consumer-opinion Platforms: What Motivates Consumers to Articulate Themselves on the Internet?” Journal of Interactive Marketing, Vol. 18 (1), pp. 38-52.
    60. Hennig-Thurau, T., and Walsh. G. (2003). “Electronic Word-of-Mouth: Motives for and Consequences of Reading Customer Articulations onthe Internet,” International Journal of Electronic Commerce, Vol. 8(2), pp. 51-74.
    61. Hu, M. and Liu, B. (2004). “Mining and Summarizing Customer Reviews.” Association for Computing Machinery (ACM).
    62. Hoffman, D.L. and Novak, T.P. (1996). “Marketing in hypermedia computer-mediated environments: conceptual foundations,” Journal of Marketing, Vol. 60(3), pp. 50-68.
    63. Holzer, A. and Ondrus, J. (2009). “Trends in Mobile Application Development,” Social Informatics and Telecommunications Engineering, Vol. 12(1), pp. 55.
    64. Holbrook, M. B. and Howard,J.A. (1977),“Freguently Purchased Nondurable Goods and Services,”in Selected Aspects of Consumer Behavior,Robert Ferber,ed.,Washington,DC:National Science Foundation, PP. 189-222.
    65. Hennig-Thurau, T., Gwinner, K. P., Walsh, G. and Gremler, D. D. (2004), “Electronic Word-of-Mouth Via Consumer-Opinion Plat forms: What Motivates Consumers to Articulate Themselves on the Internet?” Journal of Interactiv e Marketing, Vol. 18, pp. 38- 52.
    66. Harrison-Walker, L. J. (2001). “The Measurement of Word-of-Mouth Communication and an Investigation of Service Quality and Customer Commitment as Potential Antecedents”, Journal of Service Research,4(1), 60-75.
    67. Harrison and Jean. (2001). “The measurement of Wood-of-Mouth Communication and an Investigation of Service Quality and Customer Commitment as Potential Antecedents,” Journal of Service Research, Vol. 4(1), pp. 60-75.
    68. Hu and B. Liu. (2004). “Mining and summarizing cus-tomer reviews. In Proceedings of the International,” Conference on Knowledge Discovery and Data Min-ing (KDD).
    69. Hatzivassiloglou, V. and McKeown, K. R. (1997). “Predicting the Semantic Orientation of Adjectives,” Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL, pp. 174-181.
    70. Iivari, J. and Koskela, K. (1987). “The PIOCO Model for Information Systems Design,” Mis Quarterly, Vol. 11(3), pp. 401- 419
    71. Ives, B. and Olson, M.H. and Baroudi, J.J. (1983). “The Measurement of User Infor mation Satisfaction,” Communication of the ACM, Vol. 26(10), pp. 785- 793.
    72. Kiecker, P. and Cowles, D. (2001). “Interpersonal Communication and Personal Influence on the Internet:A Framework for Examining Online Word-of-Mouth,” Internet Applications in Euromarketing, Vol. 11(2), pp. 71-88.
    73. Katz, E., and Lazarsfeld, P. F. (1955). “Personal Influence,” New York: Free Press.
    74. Kiecker, Pamela, and Cowles, D. (2001). “Interpersonal Communication and Personal Influence on the Internet: A Framework for Examining Online Word-of- Mouth,” Journal of Euro-Marketing, Vol. 11(2), pp. 71-88.
    75. Kotler, P. (1999). “How to Create, Win, and Dominate Markets,” New York: Free Press.
    76. Lee, C. Y., Ku, K. W. and Chen, H.H. (2009). “A Study on Identification of Opinion Holders,” Pceedings of the 21st Conference on Computational Linguistics and Speech Processing, pp. 101-114.
    77. Lee, C.M. and Pieraccini, R. (2002). ”Combining Acoustic and Language Information for EmotionRecognition,” Proceedings of IEEE conference on Cybernetics and Intelligent Systems, pp. 21-24.
    78. Lavrenko, V., Schmill, M. and Lawrie, D. (2000). “Mining of concurrent text and time series,” Proceedings of the 6th international conference on knowledge discovery and data mining, pp.37-44.
    79. Liu, Y. (2006). “Word of mouth for movies: Its dynamics and impact on box office revenue.” Journal of Marketing, Vol. 70(3), pp. 74~89.
    80. Litvin. (2008). “Electronic word-of-mouth in hospitality and tourism management,” Tourism Management, Vol. 29(3). pp. 458-468.
    81. McKinney, V., Yoon, K. and Zahedi, F. (2002). “The Measurement of Web-Customer Satisfaction: An Expectation and Disconfirmation Approach,” Information System Research, Vol. 13(3), pp. 296-315.
    82. Murphy, P.E. and Enis, B.M. (1986). “Classifying Products Strategically”, Journal of Marketing, Vol. 50, pp. 24-42
    83. Newman, P. J. (1999). “When Windows Replace Walls: Investigation Virtual Word of Mouth Exchanges and Constructing Multilogue Profiles,” Advances in Consumer Research, Vol. 26 (1), pp. 653-654.
    84. Parasuraman, A., Zeithaml, V. A., and Berry, L. L. (1988). “SERVQUAL: Multiple-item scale for measuring consumer” perceptions of service quality. Journal of Retailing, Vol. 64(1), pp. 12-40.
    85. Pang, B. and Lee, L. (2004). “A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts,” Journal of Proceedings of ACL-04, 42nd Meeting of the Association for Computational Linguistics, Barcelona, Association for Computa- tional Linguistics, pp. 271-278.
    86. Pieraccini, M., Casagli, N. and Luzi, G. (2002). “Landslide monitoring by ground-based radar interferometry: a field test in Valdarno (Italy),” Int J Remote Sens 24, pp. 1385–1391.
    87. Reingen, P. H. and Kernan, J. B. (1986). “Analysis of Referral Networks in Marketing: Methods and Illustration,” Journal of Marketing Research, Vol. 23(4), pp. 370-378.
    88. Sobhany, R. J. (2011). “Mobilize: Strategies for Success from the Frontlines of the App Revolution,” New York: Vanguard Press, pp.8-10.
    89. Resnick, P. and Zeckhauser, R. (2002). “Trust among strangers in internet transactions: empirical analysis of eBay's reputation system. Advances in Applied Microeconomics,” A Research Annual, Vol. 11, pp. 127-157.
    90. Rogers, E.M. (1983). “Diffusion of Innovations (3rd ed.),” New York: The Free Press, pp. 23-24.
    91. Reichheld, F.F. and Sasser, E.W. (1990). “Zero defections: quality comes to services,” Harvard Business Review, Vol. 68, pp. 105-111.
    92. Reidenbah, R. E. and Minton, A. P. (1991). “Customer Service Segments: Strategyic Implication for the Commercial Banking Industry,” Journal of Professional Services Marketing, Vol.6, pp. 82-94.
    93. Reingen, P. H. and Jerome, B. K. (1986). “ Analysis of Referral Networks in Marketing: Methods and Illustration.” Journal of Marketing Research, Vol. 23, pp. 370-378.
    94. Rao, A. R. and Monroe. K. B. (1988). “The Moderating Effect of Prior Knowledge on Cue Utilization in Product Evaluations,” Journal of Consumer Research, Vol. 15, pp. 253-264.
    95. Scoble, R. and Israel, S. (2006). “Naked Conversations: How Blogs are Changing the Way Businesses Talk with Customers,” New York, Wiley.
    96. Sen, S. and Lerman, D. (2007). “Why Are You Telling Me This? An Examination into Negative Consumer Reviews on the Web,” Journal of Interactive Marketing, Vol. 21(4), pp. 76-94.
    97. Silverman, G. (1997). “How to Hamess the Awesome Power of Word-of-Mouth,” Direct Marketing, Vol. 60(7), pp. 32-37.
    98. Sheth, J. N. (1971). “Word-of-Mouth in Low-Risk Innovations,” Journal of Advertising Research 11, pp. 15-18.
    99. Smith, R. E. and Swinyard, W. R. (1982), “Information Response Models: An Integrated Approach,” Journal of Marketing, Vol. 46(1), pp. 81-93.
    100. Sullivan, D. (2001). “Document warehousing and text mining: techniques for improving business operations, marketing and sales (1sted.),” New York, Wiley.
    101. Strang, R. A. (1976). “Sales Promotion: Fast Growth, Faulty Management,” Advances in Consumer Research, Vol.11, pp. 420-425.
    102. Smith, R. and Swinyard, W. (1988). “Cognitive Response to Advertising & Trial: Belief Strength. Belief Confidence and Product Curiosity,” Journal of Advertising, Vol. 17, pp. 3-14.
    103. Tetlock, P.C., Saar-Tsechansky, M. and Macskassy, S. (2008). “More than Words: quantifying Language to Measure Firms’ Fundamentals,” Journal of Finance, Vol. 63, pp. 437-467.
    104. Tetlock, P.C. (2007), “Giving Content to Investor Sentiment: The Role of Media in the stock Market,” Journal of Finance, Vol. 62, pp. 1139-1168.
    105. Turney, P. D. (2002), “Thumbs up or thumbs down Semantic orientation applied to unsupervised classification of reviews.” Proceedings of the ACL 2002 Workshop on Word Sense Disambiguation: Recent Successes and Future Directions, pp. 417-424.
    106. Teas, R. K. and Agarwal, S. (2000). “The Effect of Extrinsic Product Cues on Consumers’ Perceptions of Quality, Sacrifice, and Value,”
    Journal of the Academy of Marketing Science, Vol. 28(2), pp.278-90
    107. Vilpponen, A., Winter, S. and Sundqvist, S. (2006). “Electronic Word-of-Mouth in Online Environments: Exploring Referral Network Structure and Adoption Behavior,” Journal of Interactive Advertising, Vol. 6 (2), pp. 71-86.
    108. Wuthrich, B., Permunetilleke, D. and Sankaran, K. (1998). “Daily stock market forecast from textual web data,” Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. CA: Los Alamitos, pp. 2720-2725.
    109. Zagibalov, T. and Carroll, J. (2008). “Automatic seed word selection for unsupervised sentiment classification of Chinese text,” Proceedings of the 22nd International Conference on Computational Linguistics classification of reviews. Proceedingsof 40th Annual Meeting of the ACL, pp. 417-424.
    110. Zagibalov, T. and Carroll, J. (2008). “Unsupervised Classification of Sentiment of Objectivity in Chinese Text.” In Proceedings of the Third International Joint Conference on Natural Language Processing, pp. 304–311.
    111. Zhu, F. and Zhang, X. (2006). “The influence of online consumer reviews on the demand for experience goods: The case of video game,” 27th International Conference on Information Systems (ICIS-27), Milwaukee, WI.
    112. Zeithaml, V. A. and Berry, L. L. (1988), “SERVQUAL: A Multiple-Item Scale for Measuring Consumer Perceptions of Service Quality, ” Journal of Retailing, Vol. 64, pp.12-41.
    113. Zeithaml, V.A. (1988). “Consumer Perceptions of Price, Quality, and Value: A Means-End Model and Synthesis of Evidence.” Journal of Marketing, Vol. 52(3), pp. 2-22.
    114. Zeithaml, V. A. and Bitner, M. J. (2000). “Services Marketing,” Boston, McGraw-Hill, pp.12-14.
    115. Zeithaml, V. A.(1988). “Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence,” Journal of Marketing, Vol. 52, pp.2-22.
    網路文獻
    1. Cearleyr,, D. (2011). “Top 10 Strategic Technologies for 2012,” http://www.gartner.com/it/page.jsp?id=1826214
    2. Cody, L. (2011). “iPhone and App Store in Guinness World Records Gamer’s Edition,”http://www.idownloadblog.com/2011/05/13/iphone-and-app-store-in-guinness-world-records-gamers-edition/
    3. FaberNove.(2010). “The iPhone App Store's Ranking Algorithm,” http://www.readwriteweb.com/start/2010/02/iphone-appstore-ranking-algorithm.php.
    4. FaberNove. (2010). “How to sussfully market an iPhone app based on of of the top selling app in the french app store,” http://www.slideshare.net/faberNovel/how-to-successfully-market-your-iphone-application.
    5. Helen Chiang. (2012). “IDC Taiwan ICT Predictions 2012,” http://cdn.idc.asia/files/418c3f46-d3b0-4846-a5e9-82208ba55131.pdf.
    6. Horrigan, J. B.(2008). “Online shopping,” http://www.pewinternet.org/Reports/2008/Online-Shopping.aspx.
    7. IDC.(2010). “Mobile Applications Revenues to Experience More Than 60% Compound Annual Growth Through 2014,” http://www.idc.com/about/viewpressrelease.jsp?containerId=prUS22617910#.
    8. ITU.(2010). “The World in 2010,” http://www.itu.int/ITU-D/ict/material/FactsFigures2010.pdf.
    9. James Falconer.(2008). “Apple App Store Tops Wired’s Technology Breakthroughs of 2008,” http://www.intomobile.com/2008/12/26/app-store-tops-wireds-technology-breakthroughs-of-2008/.
    10. Mobilewalla.(2011). “Sunday Is The Best Day To Launch Your Mobile App,” http://techcrunch.com/2011/12/19/sunday-is-the-best-day-to-launch-your-mobile-ap.
    11. Oshiro.(2010). “Hacking the iPhone App Store's Ranking Algorithm” http://www.readwriteweb.com/start/2010/02/iphone-appstore-ranking-algorithm.php.
    12. Piper Jaffray. (2011). “Android app revenue is 7% of iPhone's,” http://tech.fortune.cnn.com/2011/11/21/piper-jaffray-android-app-revenue-is-7-of-iphones/.
    口試委員
  • 邱兆民 - 召集委員
  • 何淑君 - 委員
  • 梁定澎 - 指導教授
  • 口試日期 2012-07-28 繳交日期 2013-11-29

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫