博碩士論文 etd-1017111-211448 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 周俊宏 (Chun-hung Chou) 電子郵件信箱 E-mail 資料不公開
畢業系所 資訊管理學系研究所(Information Management)
畢業學位 碩士(Master) 畢業時期 100學年第1學期
論文名稱(中) 基於貝氏網路的概念使用編碼方式推導基因調控網路  
論文名稱(英) An encoding approach to infer gene regulatory network by Bayesian networks concept
檔案
  • etd-1017111-211448.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:使用者自訂權限:校內 1 年後、校外 3 年後公開

    論文語文/頁數 中文/86
    統計 本論文已被瀏覽 5510 次,被下載 543 次
    摘要(中) 自從高通量科技(high-throughput technologies)的發展之後,我們可以從 DNA微陣列晶片中獲得大量基因作用的時間序列數據,因此有一些科技的方法被提出來模擬基因調控網路。而基因調控網路主要用來表達基因之間的作用關係,但卻只能單純的表達基因之間的作用關係,並沒有辦法清楚的呈現基因之間的調控是如何的運作。在模擬基因調控的方法中,利用數學的方法是較常被使用的,然而在數學方法當中,非線性微分方程式中的S-system 是最被廣泛使用的。
    利用數學方法模擬基因調控網路時,最主要有二個觀點,(1)決定模型的結構、(2)估計參數值,然而利用S-system模擬基因調控網路時,我們只能夠知道其基因的表達波形,並沒有辦法知道基因之間的調控關係,但是要了解基因之間的作用關係,就要清楚的了解基因之間是如何運作的。因此我們提出利用對調控參數編碼的方式,來推導基因之間的調控參數。
    我們提出對調控參數編碼的方法,並且利用六個人工基因資料,以及假設調控參數100%已知、90%已知、70%已知、50%已知、30%已知、10%已知的六種比例。實驗結果呈現出,除了有很高的比例能夠調控出無調控、正調控與副調控三種關係之外,更能夠調控出精確的調控數值,更能夠清楚的了解基因之間的調控關係。
    摘要(英) Since the development of high-throughput technologies, we can capture large quantities of gene’s expression data from DNA microarray data, so there are some technologies have been proposed to model gene regulatory networks. Gene regulatory networks is mainly used to express the relationship between the genes, but only can express a simple relationship, and can’t clearly show how the operation between genes regulatory. In the simulation method of gene regulation, the mathematical methods are more often used. In the mathematical methods, S-system is the most widely used in non-linear differential equations.
    When the use of mathematical simulation of gene regulatory networks, there are mainly two aspects:(1) deciding on the model structure and (2) estimating the involved parameter values. However, when using S-system simulated the gene regulatory networks, we can only know the gene profiles, and there is no way to know the regulatory relationships between genes, but in order to understand the relationship between genes, we must clearly understand how genes work. Therefore, we propose to encode parameter values to infer the regulatory parameter values between genes.
    We propose the method of encoding parameter values, and using six artificial genetic datasets, and assuming 100% parameter values are known, 90% known, 70% known, 50% known, 30% known, 10% known. The experimental results show, besides it can infer a high proportion of non-regulation, positive regulation and negative regulation, also can infer more precise parameter values, and also has a clear understanding of the regulatory relationship between genes.
    關鍵字(中)
  • 基因調控網路
  • 貝氏網路
  • 參數編碼
  • 參數估計
  • S-系統
  • 關鍵字(英)
  • gene regulatory networks
  • Bayesian networks
  • encode parameter
  • S-system
  • estimate parameter
  • 論文目次 1. 緒論 1
    1.1 研究背景 1
    1.2 研究動機 3
    1.3 問題描述 4
    1.4 論文架構 5
    2. 文獻探討 6
    2.1 模擬基因調控網路的方法 6
    2.1.1 布林網路(Boolean Networks) 6
    2.1.2 貝氏網路(Bayesian Networks) 7
    2.1.3 微分方程式(Differential Equations) 9
    2.2 方程式最佳化及評估方式 10
    2.2.1 粒子群優化演算法(Particle Swarm Optimization) 10
    2.2.2 參數值評估方式 12
    3. 研究方法與架構 14
    3.1 研究方法 14
    3.1.1 參數未知比例與基因資料 14
    3.1.2 編碼方式 15
    3.1.3 適合度值(Fitness Value)與懲罰方式 17
    3.2 實驗流程 18
    4. 實驗結果與討論 21
    4.1 實驗資料 21
    4.2 三尺度編碼方式 23
    4.2.1 4個基因數資料 23
    4.2.2 第一筆5個基因數資料 25
    4.2.3 第二筆5個基因數資料 27
    4.2.4 第三筆5個基因數資料 29
    4.2.5 第四筆5個基因數資料 31
    4.2.6 10個基因數資料 33
    4.3 七尺度編碼 35
    4.3.1 4個基因數資料 35
    4.3.2 第一筆5個基因數資料 37
    4.3.3 第二筆5個基因數資料 39
    4.3.4 第三筆5個基因數資料 41
    4.3.5 第四筆5個基因數資料 43
    4.3.6 10個基因數資料 45
    4.4 實驗結果與討論 47
    4.4.1 實驗一 47
    4.4.2 實驗二 51
    4.4.3 實驗三 54
    4.4.4 實驗四 58
    4.4.5 實驗五 61
    4.4.6 實驗六 65
    4.5 討論 68
    5. 結論與未來研究 71
    6. 參考文獻 73
    參考文獻 1. de Jong, H., Modeling and Simulation of Genetic Regulatory Systems: A Literature Review. Journal of Computational Biology, 2002. 9(1): p. 67-103.
    2. Sima, C., Hua, J., and Jung, S., Inference of Gene Regulatory Networks Using Time-Series Data: A Survey. Current Genomics, 2009. 10: p. 416-429.
    3. Cho, K.H., Choo, S.M., Jung, S.H., Kim, J.R., Choi, H.S., and Kim, J., Reverse engineering of gene regulatory networks. Systems Biology, IET, 2007. 1(3): p. 149-163.
    4. Hecker, M., Lambeck, S., Toepfer, S., van Someren, E., and Guthke, R., Gene regulatory network inference: Data integration in dynamic models--A review. Biosystems, 2009. 96(1): p. 86-103.
    5. Noman, N. and Iba, H., Inference of gene regulatory networks using s-system and differential evolution, in Proceedings of the 2005 conference on Genetic and evolutionary computation. 2005, ACM: Washington DC, USA. p. 439-446.
    6. DeRisi, J.L., Iyer, V.R., and Brown, P.O., Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale. Science, 1997. 278(5338): p. 680-686.
    7. Holter, N.S., Maritan, A., Cieplak, M., Fedoroff, N.V., and Banavar, J.R., Dynamic modeling of gene expression data. Proceedings of the National Academy of Sciences, 2001. 98(4): p. 1693-1698.
    8. Kitano, H., Systems Biology: A Brief Overview. Science, 2002. 295(5560): p. 1662-1664.
    9. Albert, R., Network Inference, Analysis, and Modeling in Systems Biology. The Plant Cell Online, 2007. 19(11): p. 3327-3338.
    10. Sakamoto, E. and Iba, H. Inferring a system of differential equations for a gene regulatory network by using genetic programming. in Proceedings of the 2001 Congress on Evolutionary Computation. 2001.
    11. Ferrazzi, F., Magni, P., Sacchi, L., Nuzzo, A., Petrovic, U., and Bellazzi, R., Inferring gene regulatory networks by integrating static and dynamic data. International Journal of Medical Informatics, 2007. 76(Supplement 3): p. S462-S475.
    12. Tsai, K.-Y. and Wang, F.-S., Evolutionary optimization with data collocation for reverse engineering of biological networks. Bioinformatics, 2005. 21(7): p. 1180-1188.
    13. Yeh, W.-C., Lin, W.-B., Hsieh, T.-J., and Liu, S.-L., Feasible prediction in S-system models of genetic networks. Expert Systems with Applications, 2011. 38(1): p. 193-197.
    14. Noman, N. and Iba, H., Inferring Gene Regulatory Networks using Differential Evolution with Local Search Heuristics. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2007. 4: p. 634-647.
    15. Geier, F., Timmer, J., and Fleck, C., Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge. BMC Systems Biology, 2007. 1(1): p. 11.
    16. Schlitt, T. and Brazma, A., Current approaches to gene regulatory network modelling. BMC Bioinformatics, 2007. 8(Suppl 6): p. S9.
    17. Zou, Y.M., Modeling and analyzing complex biological networks incooperating experimental information on both network topology and stable states. Bioinformatics, 2010. 26(16): p. 2037-2041.
    18. Gupta, S., Bisht, S.S., Kukreti, R., Jain, S., and Brahmachari, S.K., Boolean network analysis of a neurotransmitter signaling pathway. Journal of Theoretical Biology, 2007. 244(3): p. 463-469.
    19. Davidich, M.I. and Bornholdt, S., Boolean Network Model Predicts Cell Cycle Sequence of Fission Yeast. PLoS One, 2008. 3(2): p. e1672.
    20. Mai, Z. and Liu, H., Boolean network-based analysis of the apoptosis network: Irreversible apoptosis and stable surviving. Journal of Theoretical Biology, 2009. 259(4): p. 760-769.
    21. Pal, R., Ivanov, I., Datta, A., Bittner, M.L., and Dougherty, E.R., Generating Boolean networks with a prescribed attractor structure. Bioinformatics, 2005. 21(21): p. 4021-4025.
    22. Kim, S.Y., Imoto, S., and Miyano, S., Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings in Bioinformatics, 2003. 4(3): p. 228-235.
    23. Perrin, B.-E., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J., and d’Alché–Buc, F., Gene networks inference using dynamic Bayesian networks. Bioinformatics, 2003. 19(suppl 2): p. ii138-ii148.
    24. Li, S.P., Tseng, J.J., and Wang, S.C., Reconstructing gene regulatory networks from time-series microarray data. Physica A: Statistical Mechanics and its Applications, 2005. 350(1): p. 63-69.
    25. Beal, M.J., Falciani, F., Ghahramani, Z., Rangel, C., and Wild, D.L., A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics, 2005. 21(3): p. 349-356.
    26. Kaderali, L., Dazert, E., Zeuge, U., Frese, M., and Bartenschlager, R., Reconstructing signaling pathways from RNAi data using probabilistic Boolean threshold networks. Bioinformatics, 2009. 25(17): p. 2229-2235.
    27. Gebert, J., Radde, N., and Weber, G.W., Modeling gene regulatory networks with piecewise linear differential equations. European Journal of Operational Research, 2007. 181(3): p. 1148-1165.
    28. Lee, W.-P. and Tzou, W.-S., Computational methods for discovering gene networks from expression data. Briefings in Bioinformatics, 2009. 10(4): p. 408-423.
    29. Chou, I.C. and Voit, E.O., Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Mathematical Biosciences, 2009. 219(2): p. 57-83.
    30. Herrgård, M.J., Covert, M.W., and Palsson, B.Ø., Reconstruction of microbial transcriptional regulatory networks. Current Opinion in Biotechnology, 2004. 15(1): p. 70-77.
    31. Savageau, M.A., Biochemical systems analysis A study of function and design in molecular biology. 1976: Addison-Wesley.
    32. Voit, E.O., Computational Analysis of Biochemical Systems. 2000: Cambridge University Press.
    33. Wang, Y., Wang, G., Yang, B., Tao, H., Yang, J., Deng, Y., and Liu, Y., Reconstruct gene regulatory network using slice pattern model. BMC Genomics, 2009. 10(Suppl 1): p. S2.
    34. Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K., and Tomita, M., Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics, 2003. 19(5): p. 643-650.
    35. Kennedy, J. and Eberhart, R. Particle swarm optimization. in Proceedings of IEEE International Conference on Neural Networks. 1995.
    36. Eberhart and Yuhui, S. Particle swarm optimization: developments, applications and resources. in Proceedings of the 2001 Congress on Evolutionary Computation. 2001.
    37. Tominaga, D., Koga, N., and Okamoto, N. Efficient numerical optimization algorithm based on genetic algorithm for inverse problem. in Proceedings of the Genetic and Evolutionary Computation Conference. 2000.
    38. Moles, C.G., Mendes, P., and Banga, J.R., Parameter Estimation in Biochemical Pathways: A Comparison of Global Optimization Methods. Genome Research, 2003. 13(11): p. 2467-2474.
    39. Savageau, M.A., Introduction to S-systems and the underlying power-law formalism. Mathematical and Computer Modelling, 1988. 11: p. 546-551.
    40. Thieffry, D., Huerta, A.M., Pérez-Rueda, E., and Collado-Vides, J., From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. BioEssays, 1998. 20(5): p. 433-440.
    41. Ho, S.-Y., Hsien, C.-H., Yu, F.-C., and Huang, H.-L., An Intelligent Two-Stage Evolutionary Algorithm for Dynamic Pathway Identification From Gene Expression Profiles. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2007. 4(4): p. 648-704.
    42. Wang, F.-S., Su, T.-L., and Jang, H.-J., Hybrid Differential Evolution for Problems of Kinetic Parameter Estimation and Dynamic Optimization of an Ethanol Fermentation Process. Industrial & Engineering Chemistry Research, 2001. 40(13): p. 2876-2885.
    43. Cao, H., Kang, L., Chen, Y., and Yu, J., Evolutionary Modeling of Systems of Ordinary Differential Equations with Genetic Programming. Genetic Programming and Evolvable Machines, 2000. 1(4): p. 309-337.
    44. Tucker, W. and Moulton, V., Parameter Reconstruction for Biochemical Networks Using Interval Analysis. Reliable Computing, 2006. 12(5): p. 389-402.
    45. Gennemark, P. and Wedelin, D., Efficient algorithms for ordinary differential equation model identification of biological systems. Systems Biology, IET, 2007. 1(2): p. 120-129.
    口試委員
  • 蔡玉娟 - 召集委員
  • 鄒文雄 - 委員
  • 李偉柏 - 指導教授
  • 鄭炳強 - 指導教授
  • 口試日期 2011-07-29 繳交日期 2011-10-17

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫