博碩士論文 etd-0905106-110311 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 曾俊融(Chun-jung Tseng) 電子郵件信箱 E-mail 資料不公開
畢業系所 資訊管理學系研究所(Information Management)
畢業學位 碩士(Master) 畢業時期 94學年第2學期
論文名稱(中) 利用決策法則探勘顧客特徵-以高雄地區飯店住宿顧客為例
論文名稱(英) Using Decision Rules to Identify the Customer Features– A Case Study of Hotel Customers in Kaohsiung City, Taiwan
檔案
  • etd-0905106-110311.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:校內校外均不公開

    論文語文/頁數 中文/69
    統計 本論文已被瀏覽 5362 次,被下載 0 次
    摘要(中) 國際觀光飯店產業在今日已是一個專業的經營領域,必需針對產業的經營特性、市場的需求及消費者的喜好來發展,而不是守株待兔般的等著顧客上門。藉由資料探勘的技術,有助於發現顧客的特徵,幫助飯店做出正確的決策,也可利用顧客特徵來制定行銷策略,主動爭取顧客,使企業處於更有利的競爭位置。
    在顧客的消費行為背後,往往隱含某種特殊的需求,但由交易的資料中,僅能得知顧客的需求量,而未能判斷出隱含的資訊。所以本研究利用資料探勘的技術,對飯店近三年來的顧客之歷史資料進行探勘,利用前兩年的顧客資料建立決策法則,並以決策法則描述選用不同的套裝住宿專案之高房價顧客的特徵,再利用一年的顧客資料來驗證其可行性,希望能藉此將累積了許多與顧客相關的寶貴資料轉化成企業的知識。其結果顯示,藉由決策法則所描述的目標顧客之特徵,經測試資料驗證,呈現出不錯的效果,這將可有效的輔助行銷人員制定行銷活動,提升飯店的競爭優勢。
    摘要(英) International tourist hotel industry has becoming a professional management domain nowadays. Due to the increasingly fierce competition, hotels must develop ways to attract customers by meeting their market requirements and preferences, rather than waiting passively for the customers to come. With data mining technology, the hotels can facilitate the discovered characteristics of potential customers to make the right marketing strategies and decisions by targeting at specific groups of customers.
    Behind the consumers’ behaviors, there are usually indicators for special consuming requirements. However, by browsing the business transaction data, one can usually learn only the consuming requirement volume and is unable to determine the implied and hidden information. This research makes use of data mining technology to explore the customers’ historical data. Specifically, it applies the discovered decision rule to investigate and validate the characteristics of potentially customers — customers who are more likely to book rooms of higher rate. We apply the data mining techniques to the transactional data of a hotel, collected over three years. Our research reveals that there exist characteristics rules for the potential customers and these rules do not change abruptly over the years. The application of these rules to target advertising in hotel domain is verified using the hotel transaction data collected in the subsequent year. The result shows that by targeting at customers of the discovered characteristics rules, higher response rate can be achieved.
    關鍵字(中)
  • 資料探勘
  • 決策法則
  • 顧客特徵
  • 套裝住宿專案
  • 國際觀光飯店
  • 關鍵字(英)
  • hotel package
  • international tourist hotel
  • data mining
  • customer features
  • decision rule
  • 論文目次 第一章、緒論 1
    第一節、研究背景 1
    第二節、研究動機 3
    第三節、研究目的 5
    第四節、研究範圍與限制 6
    第二章、文獻探討 8
    第一節、飯店之定義與經營特性 8
    第二節、套裝行銷之定義 10
    第三節、知識發現與資料探勘 14
    第四節、資料探勘的功能 18
    第五節、分類分析技術 20
    第六節、決策樹 22
    第七節、非對稱性資料分配 26
    第八節、資料探勘在飯店業之應用 28
    第三章、研究方法 32
    第一節、決定資料探勘的目的與技術 32
    第二節、資料來源 33
    第三節、資料選擇 34
    第四節、資料預先處理 36
    第五節、資料轉換 38
    第六節、特徵項目的挑選 39
    第七節、分類分析 40
    第四章、實証評估 45
    第一節、顧客行為特徵的決策法則 45
    第二節、解釋與評估 51
    第五章、結論 55
    第一節、研究結論 55
    第二節、未來研究方向 57
    參考文獻 59
    參考文獻 (一)中文部分
    1.李淑芬,「臨床路徑之建立機制-應用資料採礦技術」,東海大學工業工程學系碩士論文,2002年。
    2.李欽明,「旅館客房管理實務」,揚智文化,1998年。
    3.吳松融,「以決策法則為基礎之顧客區隔策略」,2001年科技與管理學術研討會論文集,2001年。
    4.邱義堂,「通信資料庫之資料挖掘:客戶流失預測之研究」,國立中山大學資訊管理研究所碩士論文,2000年。
    5.陳世源,「資料採研技術在病例與藥品關連性之研究」,國立中山大學資訊管理研究所碩士論文,1999年。
    6.曾新穆,李建億 譯,R.J. Roiger and M.W. Geatz 著,「資料探勘」,東華書局,2003年。
    7.曾憲雄,蔡秀滿,蘇東興,曾秋蓉,王慶堯,「資料探勘 Data Mining」,旗標出版社,2005年。
    8.葉樹菁,「中華民國80年台灣地區國際觀光旅館營運分析報告」,交通部觀光局,1992年。
    9.齊玉美,「不對稱性分類分析之研究」,國立中山大學資訊管理研究所碩士論文,2003年。
    10.謝邦昌,「資料採礦入門及應用-從統計技術看資料採礦」,資商訊息顧問股份有限公司,2001年。
    11.謝淑芬,「觀光心理學」,五南圖書,1994年。
    12.魏志平,董和昇,第六章「資料管理與分析」,「電子商務理論與實務 二版」,梁定澎主編,華泰文化事業公司,2002年。
    13.交通部觀光局行政資訊網站,http://admin.taiwan.net.tw/indexc.asp。
    (二)英文部分
    1.G. Adomavicius and A. Tuzhilin (2001), “Using Data Mining Methods to Build Customer Profiles,” Computer, 34(2), pp.74-82.
    2.M.J.A. Berry and G..S. Linoff (1997), Data Mining Techniques: for Marketing, Sales, and Customer Support, John Wiley & Sons.
    3.M.J.A. Berry and G..S. Linoff (2000), Mastering Data Mining, the Art & Science of Customer Relationship Management, John Wiley & Sons.
    4.A. Berson, S. Smith and K. Thearling (2000), CRM Data Mining: Build Data Mining Application for CRM, McGraw-Hill.
    5.P.K. Chan, W. Fan, A.L. Prodromidis and S.J. Stolfo (1999), “Distributed Data Mining in Credit Card Fraud Detection,” IEEE Intelligent Systems, 14(6), pp.67-74.
    6.E. DeRouin, J. Brown, H. Beck, L. Fausett and M. Schneider (1991), “Neural Network Training on Unequally Represented Classes,” Intelligent Engineering Systems Through Artificial Neural Networks, ed. C.H. Dagli, S.R.T. Kumara and Y.C. Shin, ASME Press, pp.135-145.
    7.U.M. Fayyad (1996), “Data Mining and Knowledge Discovery: Making Sense Out of Data,” IEEE Expert, 11(10), pp.20-25.
    8.U.M. Fayyad, P.S. Gregory, P. Smyth and R. Uthurusamy (1996), Advances in Knowledge Discovery and Data Mining, The MIT Press.
    9.Y. Fu (1997), “Data mining task, technique and applications,” IEEE Potentlals, 16(4),pp.18-20.
    10.S.H. Ha and S.C. Park (1998), “Application of data mining tools to hotel data mart on the Intranet for database marketing,” Expert Systems With Applications, 15, pp.1-31.
    11.J. Han and M. Kamber (2001), Data Mining: Concepts and Techniques, Academic Press.
    12.D.J. Hand (2000), “Data Mining-New challenges for statisticians,” Social Science Computer Review, 18(4), pp.442-449.
    13.P.E. Hart (1968), “The Condensed Nearest Neighbor Rule,” IEEE Transactions on Information Theory, IT-14, pp.515-516.
    14.T. Honda, H. Motizuki, T.B. Ho and M. Okumura (1997), “Generating Decision Trees from an Unbalanced Data Set,” Proceedings of the 9th European Conference on Machine Learning (ECML), ed. M.V. Someren and G. Widmer, pp.68-77.
    15.S.J. Lee and K. Siau (2001), “A review of data mining techniques,” Industrial Management and Data Systems, 101(1), pp.41-46.
    16.V.P. Magnini, E.D. Honeycutt and S.K. Hodge (2003), “Data Mining for Hotel Firms: Use and Limitations,” Cornell Hotel and Restaurant Administration Quarterly, 44, pp.94-105.
    17.N. Melab (2001), “Data mining: A key contribution to E-business,” Information and Communication Technology Law, 10(3), pp.309-318.
    18.H. Min, H. Min and A. Emam (2002), “A data mining approach to developing the profiles of hotel customers,” International Journal of Contemporary Hospitality Management, 14(6), pp.274-285.
    19.A.M. Morrison (1996), Hospitality and Travel Marketing (2nd ed.), Delmar Publishers.
    20.C. Olaru and L. Wehenkel (1999), “Data Mining,” IEEE Computer Applications in Power, 12(3), pp.19-25.
    21.S. Openshaw and C. Openshaw (1997), Artificial Intelligence in Geography, John Wiley and Sons.
    22.J.R. Quinlan (1993), C4.5: Programs for machine learning, Morgan Kaufmann.
    23.J. Vesanto and E. Alhoniemi (2000), “Clustering of the Self-Organizing Map,” IEEE Transactions on Neural Networks, 11(3), pp.586-600.
    口試委員
  • 賴香菊 - 召集委員
  • 魏志平 - 委員
  • 黃三益 - 指導教授
  • 口試日期 2006-07-28 繳交日期 2006-09-05

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫