博碩士論文 etd-0825109-161424 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 黃珮茵(Pei-Yin Huang) 電子郵件信箱 E-mail 資料不公開
畢業系所 資訊管理學系研究所(Information Management)
畢業學位 碩士(Master) 畢業時期 97學年第2學期
論文名稱(中) 科技採用意向模式之彙總分析  
論文名稱(英) A Meta Analysis of Technology Adoption Intention Models
檔案
  • etd-0825109-161424.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:校內一年後公開,校外永不公開

    論文語文/頁數 中文/122
    統計 本論文已被瀏覽 5394 次,被下載 20 次
    摘要(中) 自二十世紀中期以後,資訊科技的快速發展對人類文明產生了重大的影響。其影響層面涵蓋科學工藝、生物醫學、社會組織乃至於日常生活與娛樂。對於資訊科技使用者接受度的探討,主要有科技接受模式(Technology Acceptance Model, TAM)與計劃行為模式(Theory of Planned Behavior, TPB)二個理論來加以探討與驗證。
    本研究透過彙總分析共蒐集TAM 37篇相關文獻與TPB 23篇相關文獻,研究結果顯示職業、文化、情感、環境皆對TAM與TPB有其影響力;TAM在非學生、理性情感與個人環境之情境有顯著性的影響;TPB在非學生、東方文化、理性情感與個人環境之情境有顯著性的影響。
    在「態度-->意圖」變數關係中,將TAM與TPB共同比較,發現其TPB在個人情境的可解釋力大於TAM,其他職業情境、文化情境、情感情境、環境情境皆由TAM的可解釋力大於TPB。
    研究成果在於對TAM與TPB模式在不同的應用情境下,各構面解釋力的強度有深入的分析比較,因此可以提供學者在應用這些理論的參考,也可供國內外各個企業或組織在採用資訊科技時成功導入。
    摘要(英) The rapid development of information technology has created significant impact in most organizations. Several theories have been proposed to interpret the intention to accept technology by individuals. The two most popular ones are Technology Acceptance Model (TAM), and Theory of Planned Behavior (TPB).
    The purpose of this thesis is to investigate how well these two theories can analyze the intention of technology acceptance based on existing published primary studies. Thirty-seven studies that used TAM and twenty-three studies that used TPB were analyzed. Four variables associated with the user (student vs. non-student and oriental vs. western) and the technology applications (emotion vs. rational and individual vs. organizational applications) were used to differentiate the explanatory power of these models in different situations. The results show that these models have very different interpretation powers in different situations.
    For the relationship between attitude and intention in these two models, we found that TAM is more powerful than TPB only for individual. In all remaining situations, TAM can better explain the variance of intention. The findings are useful for researchers in selecting proper models for research and for practitioners to explore ways to increase the likelihood of technology being accepted by the user.
    關鍵字(中)
  • 彙總分析
  • 計劃行為理論
  • 科技接受模式
  • 關鍵字(英)
  • Technology Acceptance Model
  • Meta-analysis
  • Theory of Planned Behavior
  • 論文目次 目錄 I
    圖表目錄 I
    第一章 緒論 1
    1.1 研究背景與動機 1
    1.2 研究目的 2
    1.3 研究流程 3
    1.4 論文架構 4
    第二章 文獻探討 5
    2.1 科技接受理論(TECHNOLOGY ACCEPTANCE MODEL,TAM) 5
    2.1.1科技接受模式之彙總分析文獻 8
    2.2 計劃行為理論(THEORY OF PLANNED BEHAVIOR,TPB) 12
    2.3 影響解釋力之因素 14
    第三章 研究架構與方法 16
    3.1 META-ANALYSIS 彙總分析 18
    3.1.1 何謂Meta-analysis 18
    3.1.2 彙總分析之發展背景與演進 18
    3.1.3 彙總分析 19
    3.1.4 傳統分析法與彙總分析 21
    3.1.5 彙總分析之步驟 25
    3.1.6 彙總分析的相關計算與檢定 26
    3.2 資料搜集與來源 30
    3.3 研究資料登錄 31
    3.4 研究資料之編碼 31
    3.5 META 分析方法與分析工具 31
    第四章 研究結果 33
    4.1 資料檢索及樣本特性 33
    4.2 科技接受理論(TAM)之META-ANALYSIS 結果 34
    4.2.1 敘述性的分類與統計 35
    4.2.1.1以學生為對象的研究結果 36
    4.2.1.2以非學生為對象的研究結果 37
    4.2.1.3以東方文化為對象的研究結果 38
    4.2.1.4以西方文化為對象的研究結果 39
    4.2.1.5以感性之科技的研究結果 40
    4.2.1.6以理性之科技的研究結果 41
    4.2.1.7以組織之科技的研究結果 42
    4.2.1.8以個人之科技的研究結果 43
    4.2.2 科技接受理論(TAM)之量化分析 45
    4.2.2.1 以學生為對象的量化研究結果 46
    4.2.2.2 以非學生為對象的量化研究結果 47
    4.2.2.3 以西方文化為對象的量化研究結果 48
    4.2.2.4 以東方文化為對象的量化研究結果 49
    4.2.2.5 以理性之科技的量化研究結果 50
    4.2.2.6 以感性之科技的量化研究結果 51
    4.2.2.7 以組織之科技的量化研究結果 52
    4.2.2.8 以個人之科技的量化研究結果 53
    4.2.2.9 TAM Meta-analysis情境比較 54
    4.3 計劃行為理論(TPB)之META-ANALYSIS 結果 58
    4.3.1 敘述性的分類與統計 58
    4.3.1.1 以學生為對象的研究結果 59
    4.3.1.2 以非學生為對象的研究結果 60
    4.3.1.3 以西方文化為對象的研究結果 61
    4.3.1.4 以東方文化為對象的研究結果 62
    4.3.1.5 以理性之科技的研究結果 63
    4.3.1.6 以感性之科技的研究結果 64
    4.3.1.7 以組織之科技的研究結果 65
    4.3.1.8 以個人之科技的研究結果 66
    4.3.2計劃行為理論(TPB)之量化分析 67
    4.3.2.1以學生為對象的量化研究結果 68
    4.3.2.2以非學生為對象的量化研究結果 70
    4.3.2.3以西方文化為對象的量化研究結果 71
    4.3.2.4以東方文化為對象的量化研究結果 72
    4.3.2.5以理性之科技的量化研究結果 73
    4.3.2.6以感性之科技的量化研究結果 74
    4.3.2.7以組織之科技的量化研究結果 75
    4.3.2.8以個人之科技的量化研究結果 76
    4.3.2.9 TPB Meta-analysis 情境比較 78
    4.4 研究結果彙整 81
    4.4.1 TAM 與TPB 解釋力比較 82
    第五章 結論與建議 86
    5.1 研究結論 86
    5.2 研究貢獻 88
    5.3 研究限制 89
    5.4 未來研究方向 89
    參考文獻 90
    附錄一:TAM研究樣本資料整理 104
    附錄二:TAM研究樣本文獻 106
    附錄三:TPB研究樣本資料整理 109
    附錄四:TPB研究樣本文獻 111
    參考文獻 一、中文部份
    1. 湯光明(2008),以科技接受模式探討原住民成人數位學習之研究-以原住民族網路學院為例,國立暨南國際大學成人與繼續教育研究所碩士論文
    2. 陳育達(2001),由使用者態度探討投資者對網路下單之接受度,國立中央大學資訊管理所碩士論文
    3. 陳育達(2001),使用者態度探討投資者對網路下單之接受度,國立中央大學資訊管理所碩士論文
    4. 廖御超(2006),影響採用創新產品之相關因素探討,國立東華大學企業管理學所碩士論文
    5. 吳盛(2003),以計劃行為理論探討資訊職業的知識分享行為,國立中山大學資訊管理所博士論文
    6. 洪新原,梁定澎,張嘉銘(2005),科技接受模式之彙總分析,資訊管理學報,第十二卷,第四期
    二、英文部份
    1. Agarwal, R., and J. Prasad. 1999. Are individual differences germane to the acceptance of new information technologies? Decision Sciences 30, (2): 361-91.
    2. ———. 1998. The antecedents and consequents of user perceptions in information technology adoption. Decision Support Systems 22, (1): 15-29.
    3. Ahn, T., S. Ryu, and I. Han. 2007. The impact of web quality and playfulness on user acceptance of online retailing. Information & Management 44, (3): 263-75.
    4. ———. 2004. The impact of the online and offline features on the user acceptance of internet shopping malls. Electronic Commerce Research and Applications 3, (4): 405-20.
    5. Al-Gahtani, S. S., G. S. Hubona, and J. Wang. 2007. Information technology (IT) in saudi arabia: Culture and the acceptance and use of IT. Information & Management.
    6. Arning, K., and M. Ziefle. 2007. Understanding age differences in PDA acceptance and performance. Computers in Human Behavior 23, (6): 2904-27.
    7. Bagchi, S., S. Kanungo, and S. Dasgupta. 2003. Modeling use of enterprise resource planning systems: A path analytic study. European Journal of Information Systems 12, (2): 142-58.
    8. Bhattacherjee, A. 2001. An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems 32, (2): 201-14.
    9. Bhattacherjee, A. 2001. Understanding information systems continuance: An expectation-confirmation model. Mis Quarterly: 351-70.
    10. Bhattacherjee, A., and G. Premkumar. 2004. Understanding changes in belief and attitude toward information technology usage: A theoretical model and longitudinal test. Management Information Systems Quarterly 28, (2): 5.
    11. Bosnjak, M., T. L. Tuten, and W. W. Wittmann. 2005. Unit (non) response in web-based access panel surveys: An extended planned-behavior approach. Psychology and Marketing 22, (6).
    12. Brinkman, W. P., and S. Love. 2006. Developing an instrument to assess the impact of attitude and social norms on user selection of an interface design: A repertory grid approach. Paper presented at Proceedings of the 13th Eurpoean conference on Cognitive ergonomics: trust and control in complex socio-technical systems, .
    13. Brosnan, MJ. 1999. Modeling technophobia: A case for word processing. Computers in Human Behavior 15, (2): 105-21.
    14. Brown, SA, AP Massey, MM Montoya-Weiss, and JR Burkman. 2002. Do I really have to? user acceptance of mandated technology. European Journal of Information Systems 11, (4): 283-95.
    15. Burton-Jones, A., and G. S. Hubona. 2006. The mediation of external variables in the technology acceptance model. Information & Management 43, (6): 706-17.
    16. Burton-Jones, A., and G. S. Hubona. 2005. Individual differences and usage behavior: Revisiting a technology acceptance model assumption. ACM SIGMIS Database 36, (2): 58-77.
    17. Castañeda, J. A., F. Muñoz-Leiva, and T. Luque. 2007. Web acceptance model (WAM): Moderating effects of user experience. Information & Management 44, (4): 384-96.
    18. Celuch, K., S. Taylor, and S. Goodwin. 2004. Understanding insurance salesperson internet information management intentions: A test of competing models. Journal of Insurance Issues 27, (1): 22-40.
    19. Chan, H. C., and H. H. Teo. 2007. Evaluating the boundary conditions of the technology acceptance model: An exploratory investigation.
    20. Chang, P. V. C. 2004. The validity of an extended technology acceptance model (TAM) for predicting intranet/portal usage. Unpublished Masters Dissertation, University of North Carolina, Chapel Hill, NC.
    21. Chau, P. Y. K. 1996. An empirical investigation on factors affecting the acceptance of CASE by systems developers. Information & Management 30, (6): 269-80.
    22. Chau, P. Y. K., and P. J. H. Hu. 2002. Investigating healthcare professionals’ decisions to accept telemedicine technology: An empirical test of competing theories. Information & Management 39, (4): 297-311.
    23. Chau, P. Y. K., and P. J. H. Hu. 2001. Information technology acceptance by individual professionals: A model comparison approach*. Decision Sciences 32, (4): 699-719. 
    24. Chen, C. D., Y. W. Fan, and C. K. Farn. 2007. Predicting electronic toll collection service adoption: An integration of the technology acceptance model and the theory of planned behavior. Transportation Research Part C 15, (5): 300-11.
    25. Chen, L., M. L. Gillenson, and D. L. Sherrell. 2002. Enticing online consumers: An extended technology acceptance perspective. Information & Management 39, (8): 705-19.
    26. Cheng, T. C. E., D. Y. C. Lam, and A. C. L. Yeung. 2006. Adoption of internet banking: An empirical study in hong kong. Decision Support Systems 42, (3): 1558-72.
    27. Cheung, W., M. K. Chang, and V. S. Lai. 2000. Prediction of internet and world wide web usage at work: A test of an extended triandis model. Decision Support Systems 30, (1): 83-100.
    28. Chuan-Chuan Lin, J., and H. Lu. 2000. Towards an understanding of the behavioural intention to use a web site. International Journal of Information Management 20, (3): 197-208.
    29. Crespo, Á. H., and I. A. R. D. B. Rodríguez. 2008. Explaining B2C e-commerce acceptance: An integrative model based on the framework by gatignon and robertson. Interacting with Computers 20, (2): 212-24.
    30. Cyr, D., M. Head, and A. Ivanov. 2006. Design aesthetics leading to m-loyalty in mobile commerce. Information & Management 43, (8): 950-63.
    31. d’Astous, A., F. Colbert, and D. Montpetit. 2005. Music piracy on the Web–How effective are anti-piracy arguments? evidence from the theory of planned behaviour. Journal of Consumer Policy 28, (3): 289-310.
    32. Dasgupta, S., M. Granger, and N. McGarry. 2002. User acceptance of e-collaboration technology: An extension of the technology acceptance model. Group Decision and Negotiation 11, (2): 87-100.
    33. Davis, F. D. 1993. User acceptance of information technology: System characteristics, user perceptions and behavioral impacts. International Journal of Man-Machine Studies 38, (3): 475-87.
    34. Davis, F. D., R. P. Bagozzi, and P. R. Warshaw. 1989. User acceptance of computer technology: A comparison of two theoretical models. Management Science: 982-1003.
    35. Deng, X., W. J. Doll, A. R. Hendrickson, and J. A. Scazzero. 2005. A multi-group analysis of structural invariance: An illustration using the technology acceptance model. Information & Management 42, (5): 745-59.
    36. Devaraj, S., M. Fan, and R. Kohli. 2003. Antecedents of B2C channel satisfaction and preference: Validating e-commerce metrics. Information Systems Research 13, (3): 316-33.
    37. Dishaw, M. T., and D. M. Strong. 1999. Extending the technology acceptance model with task–technology fit constructs. Information & Management 36, (1): 9-21.
    38. Fang, J., P. Shao, and G. Lan. 2009. Effects of innovativeness and trust on web survey participation. Computers in Human Behavior 25, (1): 144-52.
    39. Featherman, M. S., and P. A. Pavlou. 2003. Predicting e-services adoption: A perceived risk facets perspective. International Journal of Human-Computer Studies 59, (4): 451-74.
    40. Featherman, M. S., and P. A. Pavlou. 2003. Predicting e-services adoption: A perceived risk facets perspective. International Journal of Human-Computer Studies 59, (4): 451-74.
    41. Fenech, T. 1998. Using perceived ease of use and perceived usefulness to predict acceptance of the world wide web. Computer Networks and ISDN Systems 30, (1-7): 629-30.
    42. Fu, J. R., C. K. Farn, and W. P. Chao. 2006. Acceptance of electronic tax filing: A study of taxpayer intentions. Information & Management 43, (1): 109-26.
    43. Garrity, E. J., B. Glassberg, Y. J. Kim, G. L. Sanders, and S. K. Shin. 2005. An experimental investigation of web-based information systems success in the context of electronic commerce. Decision Support Systems 39, (3): 485-503.
    44. Gefen, D., and M. Keil. 1998. The impact of developer responsiveness on perceptions of usefulness and ease of use. ACM SIGMIS Database 29, (2): 35-49.
    45. Gefen, D., and D. Straub. 2000. The relative importance of perceived ease of use in IS adoption: A study of e-commerce adoption. Journal of the Association for Information Systems 1, (8): 1-28.
    46. Gefen, D., and D. W. Straub. 1997. Gender differences in the perception and use of e-mail: An extension to the technology acceptance model. Mis Quarterly: 389-400.
    47. Gentry, L., and R. Calantone. 2002. A comparison of three models to explain shop-bot use on the web. Psychology and Marketing 19, (11).
    48. George, J. F. 2004. The theory of planned behavior and internet purchasing. Internet Research 14, (3): 198-212.
    49. Glass, G. V., B. McGaw, and M. L. Smith. 1981. Meta-analysis in social researchSage publications, Inc.
    50. Gray, P., K. J. Lyytinen, C. Saunders, R. T. Watson, L. P. Willcocks, and V. Zwass. 2006. How shall we manage our journals in the future? A discussion of richard T. watson's proposals at ICIS 2004. Communications of the Association for Information Systems 18, (1): 14.
    51. Guo, Y., and S. Barnes. 2007. Why people buy virtual items in virtual worlds with real money.
    52. Ha, I., Y. Yoon, and M. Choi. 2007. Determinants of adoption of mobile games under mobile broadband wireless access environment. Information & Management 44, (3): 276-86.
    53. Hansen, T., J. Møller Jensen, and H. Stubbe Solgaard. 2004. Predicting online grocery buying intention: A comparison of the theory of reasoned action and the theory of planned behavior. International Journal of Information Management 24, (6): 539-50.
    54. Hasan, B. 2006. Delineating the effects of general and system-specific computer self-efficacy beliefs on IS acceptance. Information & Management 43, (5): 565-71.
    55. Hedges, L. V., and I. Olkin. 1985. Statistical methods for meta-analysis.
    56. Henderson, R., and M. J. Divett. 2003. Perceived usefulness, ease of use and electronic supermarket use. International Journal of Human-Computer Studies 59, (3): 383-95.
    57. Henderson, R., D. Rickwood, and P. Roberts. 1998. The beta test of an electronic supermarket. Interacting with Computers 10, (4): 385-99.
    58. Hernandez, B., J. Jimenez, and M. Jose Martin. 2009. The impact of self-efficacy, ease of use and usefulness on e-purchasing: An analysis of experienced e-shoppers. Interacting with Computers 21, (1-2): 146-56.
    59. Herrero Crespo, Á., and I. Rodríguez del Bosque. 2008. The effect of innovativeness on the adoption of B2C e-commerce: A model based on the theory of planned behaviour. Computers in Human Behavior 24, (6): 2830-47.
    60. Hong, S. J., J. Y. L. Thong, and K. Y. Tam. 2006. Understanding continued information technology usage behavior: A comparison of three models in the context of mobile internet. Decision Support Systems 42, (3): 1819-34.
    61. Horton, R. P., T. Buck, P. E. Waterson, and C. W. Clegg. 2001. Explaining intranet use with the technology acceptance model. Journal of Information Technology 16, (4): 237-49.
    62. Hsu, C. L., and J. C. C. Lin. 2008. Acceptance of blog usage: The roles of technology acceptance, social influence and knowledge sharing motivation. Information & Management 45, (1): 65-74.
    63. Hsu, C. L., and H. P. Lu. 2004. Why do people play on-line games? an extended TAM with social influences and flow experience. Information & Management 41, (7): 853-68.
    64. Hsu, M. H., and C. M. Chiu. 2004. Internet self-efficacy and electronic service acceptance. Decision Support Systems 38, (3): 369-81.
    65. Hsu, M. H., C. H. Yen, C. M. Chiu, and C. M. Chang. 2006. A longitudinal investigation of continued online shopping behavior: An extension of the theory of planned behavior. International Journal of Human-Computer Studies 64, (9): 889-904.
    66. Hu, P. J., P. Y. K. Chau, O. R. L. Sheng, and K. Y. Tam. 1999. Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of Management Information Systems 16, (2): 91-112.
    67. Hu, P. J. H., T. H. K. Clark, and W. W. Ma. 2003. Examining technology acceptance by school teachers: A longitudinal study. Information & Management 41, (2): 227-41.
    68. Huang, E., and M. H. Chuang. 2007. Extending the theory of planned behaviour as a model to explain post-merger employee behaviour of IS use. Computers in Human Behavior 23, (1): 240-57.
    69. Huang, J. H., Y. R. Lin, and S. T. Chuang. 2007. Elucidating user behavior of mobile learning. The Electronic Library 25, (5): 585-98.
    70. Huang, M. H. 2005. Web performance scale. Information & Management 42, (6): 841-52.
    71. Huh, H. J., T. Kim, and R. Law. 2009. A comparison of competing theoretical models for understanding acceptance behavior of information systems in upscale hotels. International Journal of Hospitality Management 28, (1): 121-34.
    72. Hung, S. Y., and C. M. Chang. 2005. User acceptance of WAP services: Test of competing theories. Computer Standards & Interfaces 27, (4): 359-70.
    73. Hung, S. Y., C. Y. Ku, and C. M. Chang. 2003. Critical factors of WAP services adoption: An empirical study. Electronic Commerce Research and Applications 2, (1): 42-60.
    74. Hunter, J. E., and F. L. Schmidt. 2004. Methods of meta-analysis: Correcting error and bias in research findingsSage Pubns.
    75. Hunter, J. E., F. L. Schmidt, and G. B. Jackson. 1982. Meta-analysis: Cumulating research findings across studiesSage Publications, Inc.
    76. Igbaria, M., and J. Iivari. 1995. The effects of self-efficacy on computer usage. Omega 23, (6): 587-605.
    77. Igbaria, M., and M. Tan. 1997. The consequences of information technology acceptance on subsequent individual performance. Information & Management 32, (3): 113-21.
    78. Igbaria, M., N. Zinatelli, P. Cragg, and A. L. M. Cavaye. 1997. Personal computing acceptance factors in small firms: A structural equation model. MIS Quarterly: 279-305.
    79. Jackson, C. M., S. Chow, and R. A. Leitch. 1997. Toward an understanding of the behavioral intention to use an information system. Decision Sciences 28, (2): 357-89.
    80. Joshi, D. K., and D. T. W. Lauer. 1998. Impact of information technology on users' work environment: A case of computer aided design (CAD) system implementation. Information & Management 34, (6): 349-60.
    81. Kamis, A., M. Koufaris, and T. Stern. 2008. Using an attribute-based DSS for user-customized products online: An experimental investigation. MIS Quarterly, 32 1, : 159–177.
    82. Kamis, A. A., and E. A. Stohr. 2006. Parametric search engines: What makes them effective when shopping online for differentiated products? Information & Management 43, (7): 904-18.
    83. Karahanna, E., and D. W. Straub. 1999. The psychological origins of perceived usefulness and ease-of-use. Information & Management 35, (4): 237-50.
    84. King, W. R., and J. He. 2006. A meta-analysis of the technology acceptance model. Information & Management 43, (6): 740-55.
    85. Koufaris, M. 2003. Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research 13, (2): 205-23.
    86. Koufaris, M., and W. Hampton-Sosa. 2004. The development of initial trust in an online company by new customers. Information & Management 41, (3): 377-97.
    87. Lai, V. S., and H. Li. 2005. Technology acceptance model for internet banking: An invariance analysis. Information & Management 42, (2): 373-86.
    88. Lederer, A. L., D. J. Maupin, M. P. Sena, and Y. Zhuang. 2000. The technology acceptance model and the world wide web. Decision Support Systems 29, (3): 269-82.
    89. Lederer, A. L., D. J. Maupin, M. P. Sena, and Y. Zhuang. 1998. The role of ease of use, usefulness and attitude in the prediction of world wide web usage. Paper presented at Proceedings of the 1998 ACM SIGCPR conference on Computer personnel research, .
    90. Lee, H. Y., H. Ahn, and I. Han. 2007. VCR: Virtual community recommender using the technology acceptance model and the user’s needs type. Expert Systems with Applications 33, (4): 984-95.
    91. Lee, K. C., I. Kang, and J. S. Kim. 2007. Exploring the user interface of negotiation support systems from the user acceptance perspective. Computers in Human Behavior 23, (1): 220-39.
    92. Lee, S. M., I. Kim, S. Rhee, and S. Trimi. 2006. The role of exogenous factors in technology acceptance: The case of object-oriented technology. Information & Management 43, (4): 469-80.
    93. Lee, Y., K. A. Kozar, and K. R. T. Larsen. The technology acceptance model: Past, present, and future. Communications of the Association for Information Systems (Volume 12, Article 50) 752, (780): 780.
    94. Lee, Y., J. Lee, and Z. Lee. 2006. Social influence on technology acceptance behavior: Self-identity theory perspective. ACM SIGMIS Database 37, (2-3): 60-75.
    95. Lei-da Chen Walker, L. C. Enticing online consumers: A technology acceptance perspective research-in-progress.
    96. Leonard, L. N. K., T. P. Cronan, and J. Kreie. 2004. What influences IT ethical behavior intentions—planned behavior, reasoned action, perceived importance, or individual characteristics? Information & Management 42, (1): 143-58.
    97. Li, D., P. Y. K. Chau, and H. Lou. 2005. Understanding individual adoption of instant messaging: An empirical investigation. Journal of the Association for Information Systems 6, (1): 5.
    98. Li, X., T. J. Hess, and J. S. Valacich. 2006. Using attitude and social influence to develop an extended trust model for information systems. ACM SIGMIS Database 37, (2-3): 108-24.
    99. Liao, C., J. L. Chen, and D. C. Yen. 2007. Theory of planning behavior (TPB) and customer satisfaction in the continued use of e-service: An integrated model. Computers in Human Behavior 23, (6): 2804-22.
    100. Liao, S., Y. P. Shao, H. Wang, and A. Chen. 1999. The adoption of virtual banking: An empirical study. International Journal of Information Management 19, (1): 63-74.
    101. Liker, J. K., and A. A. Sindi. 1997. User acceptance of expert systems: A test of the theory of reasoned action. Journal of Engineering and Technology Management 14, (2): 147-73.
    102. Lim, J. 2003. A conceptual framework on the adoption of negotiation support systems. Information and Software Technology 45, (8): 469-77.
    103. Limayem, M., and S. G. Hirt. 2003. Force of habit and information systems usage: Theory and initial validation. Journal of the Association for Information Systems 4, (1): 3.
    104. Lin, C. H., H. Y. Shih, and P. J. Sher. 2007. Integrating technology readiness into technology acceptance: The TRAM model. Psychology and Marketing 24, (7).
    105. Lin, H. F. 2007. Predicting consumer intentions to shop online: An empirical test of competing theories. Electronic Commerce Research and Applications 6, (4): 433-42.
    106. Little, L. 2003. Attitudes towards technology use in public zones: The influence of external factors on ATM use. Paper presented at Conference on Human Factors in Computing Systems, .
    107. Liu, L., and Q. Ma. 2005. The impact of service level on the acceptance of application service oriented medical records. Information & Management 42, (8): 1121-35.
    108. Lu, H. P., C. L. Hsu, and H. Y. Hsu. 2005. An empirical study of the effect of perceived risk upon intention to use online applications. Information Management & Computer Security 13, (2): 106-20.
    109. Lu, J., J. E. Yao, and C. S. Yu. 2005. Personal innovativeness, social influences and adoption of wireless internet services via mobile technology. Journal of Strategic Information Systems 14, (3): 245-68.
    110. Lu, J., C. S. Yu, C. Liu, and J. E. Yao. 2003. Technology acceptance model for wireless internet. Internet Research: Electronic Networking Applications and Policy 13, (3): 206-22.
    111. Luarn, P., and H. H. Lin. 2005. Toward an understanding of the behavioral intention to use mobile banking. Computers in Human Behavior 21, (6): 873-91.
    112. Lucas, H. C., and V. Spitler. 2000. Implementation in a world of workstations and networks. Information & Management 38, (2): 119-28.
    113. Lucas, H. C., and VK Spitler. 1999. Technology use and performance: A field study of broker workstations. Decision Sciences 30, (2): 291-311.
    114. Mao, E., and P. Palvia. 2006. Testing an extended model of IT acceptance in the chinese cultural context. ACM SIGMIS Database 37, (2-3): 20-32.
    115. Mathieson, K. 1991. Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Information Systems Research 2, (3): 173-91.
    116. McCloskey, D. 2004. Evaluating electronic commerce acceptance with the technology acceptance model. Journal of Computer Information Systems 44, (2): 49-57.
    117. Moon, J. W., and Y. G. Kim. 2001. Extending the TAM for a world-wide-web context. Information & Management 38, (4): 217-30.
    118. Morris, MG, V. Venkatesh, and PL Ackerman. 2005. Gender and age differences in employee decisions about new technology: An extension to the theory of planned behavior. IEEE Transactions on Engineering Management 52, (1): 69-84.
    119. Mullen, B., and R. Rosenthal. 1985. BASIC meta-analysis: Procedures and programsLawrence Erlbaum Assoc Inc.
    120. Ndubisi, N. O., O. K. Gupta, and G. C. Ndubisi. 2005. The moguls’ model of computing: Integrating the moderating impact of users’ persona into the technology acceptance model. Journal of Global Information Technology Management 8, (1): 27-47.
    121. Ndubisi, N. O., and M. Jantan. 2003. Evaluating IS usage in malaysian small and medium-sized firms using the technology acceptance model. Logistics Information Management 16, (6): 440-50.
    122. Ngai, EWT, JKL Poon, and YHC Chan. 2007. Empirical examination of the adoption of WebCT using TAM. Computers & Education 48, (2): 250-67.
    123. Ong, C. S., and J. Y. Lai. 2006. Gender differences in perceptions and relationships among dominants of e-learning acceptance. Computers in Human Behavior 22, (5): 816-29.
    124. Pagani, M. 2006. Determinants of adoption of high speed data services in the business market: Evidence for a combined technology acceptance model with task technology fit model. Information & Management 43, (7): 847-60.
    125. Pavlou, P. A. 2003. Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce 7, (3): 101-34.
    126. Pavlou, P. A., and M. Fygenson. 2006. Understanding and predicting electronic commerce adoption: An extension of the theory of planned behavior. Management Information Systems Quarterly 30, (1): 8.
    127. Pituch, K. A., and Y. Lee. 2006. The influence of system characteristics on e-learning use. Computers & Education 47, (2): 222-44.
    128. Plouffe, C. R., J. S. Hulland, and M. Vandenbosch. 2001. Research report: Richness versus parsimony in modeling technology adoption decisions--understanding merchant adoption of a smart card-based payment system. Information Systems Research 12, (2): 208.
    129. Rawstorne, P., R. Jayasuriya, and P. Caputi. 2000. Issues in predicting and explaining usage behaviors with the technology acceptance model and the theory of planned behavior when usage is mandatory. Paper presented at Proceedings of the twenty first international conference on Information systems, .
    130. Renaud, K., and J. van Biljon. 2008. Predicting technology acceptance and adoption by the elderly: A qualitative study. Paper presented at Proceedings of the 2008 annual research conference of the South African Institute of Computer Scientists and Information Technologists on IT research in developing countries: riding the wave of technology, .
    131. Riemenschneider, C. K., B. C. Hardgrave, and F. D. Davis. 2002. Explaining software developer acceptance of methodologies: A comparison of five theoretical models. IEEE Transactions on Software Engineering: 1135-45.
    132. Riemenschneider, C. K., D. A. Harrison, and P. P. Mykytyn. 2003. Understanding IT adoption decisions in small business: Integrating current theories. Information & Management 40, (4): 269-85.
    133. Roberts, P., and R. Henderson. 2000. Information technology acceptance in a sample of government employees: A test of the technology acceptance model. Interacting with Computers 12, (5): 427-43.
    134. Robinson, L., G. W. Marshall, and M. B. Stamps. 2005. Sales force use of technology: Antecedents to technology acceptance. Journal of Business Research 58, (12): 1623-31.
    135. Roca, J. C., C. M. Chiu, and F. J. Martínez. 2006. Understanding e-learning continuance intention: An extension of the technology acceptance model. International Journal of Human-Computer Studies 64, (8): 683-96.
    136. Saadé, R., and B. Bahli. 2005. The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: An extension of the technology acceptance model. Information & Management 42, (2): 317-27.
    137. Schepers, J., and M. Wetzels. 2007. A meta-analysis of the technology acceptance model: Investigating subjective norm and moderation effects. Information & Management 44, (1): 90-103.
    138. Selim, H. M. 2007. Critical success factors for e-learning acceptance: Confirmatory factor models. Computers & Education 49, (2): 396-413.
    139. Selim, H. M. 2003. An empirical investigation of student acceptance of course websites. Computers & Education 40, (4): 343-60.
    140. Shang, R. A., Y. C. Chen, and L. Shen. 2005. Extrinsic versus intrinsic motivations for consumers to shop on-line. Information & Management 42, (3): 401-13.
    141. Shih, Y. Y., and K. Fang. 2004. The use of a decomposed theory of planned behavior to study internet banking in taiwan. Internet Research 14, (3): 213-23.
    142. Shin, D. H. 2007. Potential user factors driving adoption of IPTV. what are customers expecting from IPTV? Technological Forecasting & Social Change 74, (8): 1446-64.
    143. Shin, D. H. 2007. User acceptance of mobile internet: Implication for convergence technologies. Interacting with Computers 19, (4): 472-83.
    144. Son, J. Y., S. S. Kim, and F. J. Riggins. 2006. Consumer adoption of net-enabled infomediaries: Theoretical explanations and an empirical test. Journal of the Association for Information Systems 7, (1): 18.
    145. Srite, M., and E. Karahanna. 2006. The role of espoused national cultural values in technology acceptance. MANAGEMENT INFORMATION SYSTEMS QUARTERLY 30, (3): 679.
    146. Straub, D., M. Keil, and W. Brenner. 1997. Testing the technology acceptance model across cultures: A three country study. Information & Management 33, (1): 1-11.
    147. Suh, B., and I. Han. 2002. Effect of trust on customer acceptance of internet banking. Electronic Commerce Research and Applications 1, (3-4): 247-63.
    148. Sun, H., and P. Zhang. 2006. The role of moderating factors in user technology acceptance. International Journal of Human-Computer Studies 64, (2): 53-78.
    149. Sundarraj, RP, and J. Wu. 2005. Using information-systems constructs to study online-and telephone-banking technologies. Electronic Commerce Research and Applications 4, : 427-43.
    150. Sutton, A. J., K. R. Abrams, D. R. Jones, T. A. Sheldon, and F. Song. 2000. Methods for meta-analysis in medical researchWiley Chichester.
    151. Szajna, B. 1996. Empirical evaluation of the revised technology acceptance model. Management Science: 85-92.
    152. Taylor, S., and P. A. Todd. 1995. Understanding information technology usage: A test of competing models. Information Systems Research 6, (2): 144.
    153. Teo, T., CB Lee, and CS Chai. 2008. Understanding pre-service teachers' computer attitudes: Applying and extending the technology acceptance model. Journal of Computer Assisted Learning 24, (2): 128-43.
    154. Thong, J. Y. L., W. Hong, and K. Y. Tam. 2002. Understanding user acceptance of digital libraries: What are the roles of interface characteristics, organizational context, and individual differences? International Journal of Human-Computer Studies 57, (3): 215-42.
    155. Tibenderana, P. K. G., and P. J. Ogao. 2008. Acceptance and use of electronic library services in ugandan universities. Paper presented at Proceedings of the 8th ACM/IEEE-CS joint conference on Digital libraries, .
    156. To, P. L., C. Liao, J. C. Chiang, M. L. Shih, and C. Y. Chang. 2008. An empirical investigation of the factors affecting the adoption of instant messaging in organizations. Computer Standards & Interfaces 30, (3): 148-56.
    157. van Biljon, J., and P. Kotzé. 2007. Modelling the factors that influence mobile phone adoption. Paper presented at Proceedings of the 2007 annual research conference of the South African institute of computer scientists and information technologists on IT research in developing countries, .
    158. Van der Heijden, H. 2003. Factors influencing the usage of websites: The case of a generic portal in the netherlands. Information & Management 40, (6): 541-9.
    159. van Raaij, E. M., and J. J. L. Schepers. 2008. The acceptance and use of a virtual learning environment in china. Computers & Education 50, (3): 838-52.
    160. Venkatesh, V. 2000. Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research 11, (4): 342-65.
    161. Venkatesh, V., and F. D. Davis. 1996. A model of the antecedents of perceived ease of use: Development and test*. Decision Sciences 27, (3): 451-81.
    162. Venkatesh, V., and M. G. Morris. 2000. Why don't men ever stop to ask for directions? gender, social influence, and their role in technology acceptance and usage behavior. MIS Quarterly: 115-39.
    163. Venkatesh, V., M. G. Morris, and P. L. Ackerman. 2000. A longitudinal field investigation of gender differences in individual technology adoption decision-making processes. Organizational Behavior and Human Decision Processes 83, (1): 33-60.
    164. Venkatesh, V., M. G. Morris, G. B. Davis, and F. D. Davis. 2003. User acceptance of information technology: Toward a unified view. Mis Quarterly: 425-78.
    165. Venkatesh, V., C. Speier, and M. G. Morris. 2002. User acceptance enablers in individual decision making about technology: Toward an integrated model. Decision Sciences 33, (2): 297-316.
    166. Vijayasarathy, L. R. 2004. Predicting consumer intentions to use on-line shopping: The case for an augmented technology acceptance model. Information & Management 41, (6): 747-62.
    167. Walczuch, R., J. Lemmink, and S. Streukens. 2007. The effect of service employees’ technology readiness on technology acceptance. Information & Management 44, (2): 206-15.
    168. Wang, W., and I. Benbasat. Trust in and adoption of online recommendation agents. Journal of the Association for Information Systems 6, (1): 4.
    169. Wang, Y. S. 2003. The adoption of electronic tax filing systems: An empirical study. Government Information Quarterly 20, (4): 333-52.
    170. Wang, Y. S., Y. M. Wang, H. H. Lin, and T. I. Tang. 2003. Determinants of user acceptance of internet banking: An empirical study. International Journal of Service Industry Management 14, (5): 501-19.
    171. Wixom, B. H., and P. A. Todd. 2005. A theoretical integration of user satisfaction and technology acceptance. Information Systems Research 16, (1): 85-102.
    172. Wolf, F. M. 1993. Meta-analysis: Quantitative methods for research synthesisSage Publ.
    173. Wong, Y. K., and C. J. Hsu. 2008. A confidence-based framework for business to consumer (B2C) mobile commerce adoption. Personal and Ubiquitous Computing 12, (1): 77-84.
    174. Workman, M. 2005. Expert decision support system use, disuse, and misuse: A study using the theory of planned behavior. Computers in Human Behavior 21, (2): 211-31.
    175. Wu, I. L., and J. L. Chen. 2005. An extension of trust and TAM model with TPB in the initial adoption of on-line tax: An empirical study. International Journal of Human-Computer Studies 62, (6): 784-808.
    176. Wu, J. H., and S. C. Wang. 2005. What drives mobile commerce? an empirical evaluation of the revised technology acceptance model. Information & Management 42, (5): 719-29.
    177. Wu, M. C., and F. Y. Kuo. 2008. An empirical investigation of habitual usage and past usage on technology acceptance evaluations and continuance intention.
    178. Wu, S. I. 2006. A comparison of the behavior of different customer clusters towards internet bookstores. Information & Management 43, (8): 986-1001.
    179. Yang, K. C. C. 2005. Exploring factors affecting the adoption of mobile commerce in singapore. Telematics and Informatics 22, (3): 257-77.
    180. Yi, M. Y., and Y. Hwang. 2003. Predicting the use of web-based information systems: Self-efficacy, enjoyment, learning goal orientation, and the technology acceptance model. International Journal of Human-Computer Studies 59, (4): 431-49.
    181. Yi, M. Y., J. D. Jackson, J. S. Park, and J. C. Probst. 2006. Understanding information technology acceptance by individual professionals: Toward an integrative view. Information & Management 43, (3): 350-63.
    182. Yoh, E., M. L. Damhorst, S. Sapp, and R. Laczniak. 2003. Consumer adoption of the internet: The case of apparel shopping. Psychology and Marketing 20, (12).
    183. Zain, M., R. C. Rose, I. Abdullah, and M. Masrom. 2005. The relationship between information technology acceptance and organizational agility in malaysia. Information & Management 42, (6): 829-39.
    口試委員
  • 賴香菊 - 召集委員
  • 林開 - 委員
  • 陳燈能 - 委員
  • 陳燈能 - 委員
  • 陳燈能 - 委員
  • 梁定澎 - 指導教授
  • 口試日期 2009-07-25 繳交日期 2009-08-25

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫