Responsive image
博碩士論文 etd-0812123-163514 詳細資訊
Title page for etd-0812123-163514
論文名稱
Title
生物藥劑結合高氧水灌注整治受石油碳氫化合物污染場址
Remediation of Petroleum Hydrocarbon Contaminated Sites with Biological Agents and High Oxygen Water Infusion
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2023-09-08
繳交日期
Date of Submission
2023-09-12
關鍵字
Keywords
總石油碳氫化合物、現地生物復育法、生物復育藥劑、加強好氧生物整治法、高氧水
Total Petroleum Hydrocarbons, In-situ Bioremediation, bioremediation, Enhanced Aerobic Bioremediation, high oxygen water
統計
Statistics
本論文已被瀏覽 59 次,被下載 0
The thesis/dissertation has been browsed 59 times, has been downloaded 0 times.
中文摘要
世界各國因近年來高速發展帶來土壤及地下水受總石油碳氫化合物污染事件影響,對環境保護造成巨大挑戰,環境部於89年2月2日也針對此議題宣導並執行土壤及地下水污染整治法案推行,主要目的就是為了預防類似事件發生,將受污染場址整治可以再利用,活化其土地價值,後續於99年2月3日提出修正,完善此法不足之處,使其更嚴謹。本研究以加油站污染場址為例,依歷次土壤、地下水檢測分析結果顯示,於場址東側與南側邊界處區域,土壤中總石油碳氫化合物(TPH)污染物濃度值易時有起伏變化情形,研判應是受地質質地不均質性影響,導致部分仍有殘留於地下環境中之污染物釋出。整治期間為了進一步針對污染潛勢較不穩定之 8.0 ~10 米深度地層間的改善提升處理效力,本研究將規劃採用「現地生物復育法」,以生物復育藥劑使土壤及地下水中的原生菌體增殖,分解及去除溶解在地下水中與吸附在土壤中的污染物,因TPH污染物的地下水中環境一般來說為缺氧或者是厭氧狀態,如需要提升整體TPH生物整治成效,要將其提升為好氧的環境,以利加強TPH污染物之生物降解。故此,地下水中含氧量是影響TPH污染物生物降解成效的關鍵因素。本研究在場址應用前會先進行不同濃度間的高氧水對生物復育藥劑之增殖反應,再從中選取最適此生物復育藥劑之高氧水濃度,灌注生物復育藥劑結合高氧水加強有機物與微生物及溶解氧反應目的使殘留污染物能確實移除,加強好氧生物整治法為加強污染場址中現地微生物之增殖,強化生物降解作用,可以有效處理溶解於地下水中的TPH污染物,適合用在飽和層與不飽和層中。現地生物復育法中的現地性質,就是為了加強生物降解作用可以與TPH污染物所在的深度進行反應,並可維持於整治場址中的微生物菌數生長及保持活性,是本研究中能否達到場址整治目標之關鍵。
Abstract
Due to the rapid development of countries around the world in recent years, soil and groundwater have been contaminated by total petroleum hydrocarbons, posing a huge challenge to environmental protection. On February 2, 1989, the Ministry of Environment also publicized and implemented soil pollution prevention and control measures on this issue. and the implementation of the Groundwater Pollution Remediation Act. The main purpose is to prevent similar incidents from happening, remediate contaminated sites and activate their land value. Subsequent amendments were proposed on February 3, 1999 to improve the deficiencies of this law and make it It's more rigorous. This study takes a gas station contaminated site as an example. The results of soil and groundwater testing and analysis show that in the boundary area between the east and south sides of the site, the concentration of total petroleum hydrocarbons (TPH) pollutants in the soil varies from time to time. The fluctuations and changes are judged to be affected by the heterogeneity of geological texture, resulting in the release of some pollutants that still remain in the underground environment. During the remediation period, in order to further improve the treatment efficiency in the 8.0 to 10 meter depth stratum where the pollution potential is relatively unstable, this study will plan to adopt the "on-site biological restoration method" to use biological restoration agents to make the soil and groundwater polluted. The native bacteria proliferate, decompose and remove pollutants dissolved in groundwater and adsorbed in soil. Since the environment of TPH pollutants in groundwater is generally anoxic or anaerobic, if it is necessary to improve the overall TPH biological remediation effect , it is necessary to upgrade it to an aerobic environment to enhance the biodegradation of TPH pollutants. Therefore, the oxygen content in groundwater is a key factor affecting the biodegradation efficiency of TPH pollutants. Before this study is applied to the site, the proliferation reaction of different concentrations of high-oxygen water to biological restoration agents will be first carried out, and then the most suitable concentration of high-oxygen water for the biological restoration agents will be selected, and the biological restoration agents combined with high-oxygen water will be infused The purpose of strengthening the reaction between organic matter, microorganisms and dissolved oxygen is to ensure the removal of residual pollutants. The strengthening of aerobic biological remediation method is to strengthen the proliferation of local microorganisms in contaminated sites and strengthen biodegradation, which can effectively treat TPH dissolved in groundwater. Contaminants, suitable for use in saturated and unsaturated layers. The on-site nature of the on-site bioremediation method is to enhance the biodegradation and react with the depth of TPH pollutants, and to maintain the growth and activity of microbial bacteria in the remediation site. This is the key factor in this study. The key to achieving site remediation goals.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
目錄 vi
圖目錄 ix
表目錄 xi
1 第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
2 第二章 文獻回顧 3
2.1 總石油碳氫化合物 3
2.1.1 總石油碳氫化合物特性概述 3
2.1.2 總石油碳氫化合物環境污染與危害 4
2.1.3 油品污染傳輸 5
2.1.4 油品污染指標法規 6
2.2 污染整治技術選取 8
2.3 生物整治技術 10
2.4 加強好氧生物整治法 11
3 第三章 研究方法與流程 16
3.1 研究架構及流程 16
3.2 場址特性調查 18
3.2.1 地質水文調查結果 18
3.2.2 土壤污染範圍 23
3.2.3 地下水污染範圍 25
3.3 系統設置 26
3.3.1 實驗儀器及場址使用機具 26
3.3.2 實驗藥品 27
3.4 研究方法 28
3.4.1 場址地下水樣品取樣及試驗 28
3.4.2 試驗結果應用於實際污染場址 30
3.4.3 研究成效評估 35
3.4.4 二次污染防治設備 36
4 第四章 結果與討論 37
4.1 場址周界環境檢測 38
4.1.1地下水檢測分析 38
4.1.2土壤氣體檢測分析 39
4.1.3廢水處理系統放流水及尾氣檢測分析 42
4.1.4抽出水濁度值檢測分析 43
4.2 0%、0.2%、0.5%與1%高氧水與生物藥劑增殖反應試驗分析結果 44
4.3 地下水中總生菌檢測分析 45
4.4 土壤檢測分析 46
4.4.1 土壤檢測分析(Day44~311) 46
4.5 土壤檢測分析 64
4.5.1 第一階段土壤檢測分析結果 64
4.5.2 第二階段土壤檢測分析結果 66
4.5.3 第三階段土壤檢測分析結果 67
4.5.4 第四階段土壤檢測分析結果 68
4.5.5 歷次土壤分析曲線圖 69
5 第五章 結論與建議 70
5.1 結論 70
5.2 建議 71
6 參考文獻 72

參考文獻 References
API (2004) API Interactive LNAPL Guide, version 2.0.4, American Petroleum Institute, Washington DC, U.S.A.
USEPA (2000) A Site Manager’s Guide to Identifying, Evaluating and Selecting Institutional Controls at Superfund and RCRA Corrective Action Cleanups, EPA 540-F-00-005, OSWER 9355.0-74FS-P, September 2000
USEPA, Federal Remediation Technologies Roundtable (FRTR), http://www.frtr.gov
Wilson, S. and R. Brown (1989) In-situ bioreclamation: A Cost-Effective Technology to Remediate Subsurface Organic Contamination, Ground Water Monitoring Review, 9:1, pp. 173-179.
“How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites — A Guide for Corrective Action Plan Reviewers”, USEPA, EPA 510-R-04-002, May 2004.
Koshlaf, E., & Ball, A. S. (2017). Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS microbiology, 3(1), 25.
Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., & Fava, F. (2015). Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New biotechnology, 32(1), 147-156.
Patowary, R., Patowary, K., Devi, A., Kalita, M. C., & Deka, S. (2017). Uptake of total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbons (PAHs) by Oryza sativa L. grown in soil contaminated with crude oil. Bulletin of Environmental Contamination and Toxicology, 98(1), 120-126.
Qi, S., Luo, J., O'Connor, D., Cao, X., & Hou, D. (2020). Influence of groundwater table fluctuation on the non-equilibrium transport of volatile organic contaminants in the vadose zone. Journal of Hydrology, 580, 124353.
John, R. C., Itah, A. Y., Essien, J. P., & Ikpe, D. I. (2011). Fate of nitrogen-fixing bacteria in crude oil contaminated wetland ultisol. Bulletin of environmental contamination and toxicology, 87, 343-353.
Shahi, A., Aydin, S., Ince, B., & Ince, O. (2016). Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach. Ecotoxicology and Environmental Safety, 125, 153-160.
Castiglione Xu, Y., & Lu, M. (2010). Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments. Journal of hazardous materials, 183(1-3), 395-401.
Sharma, I. (2020). Bioremediation techniques for polluted environment: concept, advantages, limitations, and prospects. In Trace Metals in the Environment-New Approaches and Recent Advances. IntechOpen.
Epa, U. (2004). How to evaluate alternative cleanup technologies for underground storage tank sites: a guide for corrective action plan reviewers. Rep. No. EPA/510/R-04-002, Washington, DC.
林俊雄(2004)石油提煉-黑黝黝的液體黃金 https://reurl.cc/qL9yqE
美國聯邦整治技術協調會 FRTR(Federal Remediatioin Technologies Roundtable)網站,網址為 http://www.frtr.gov/
美國環保署 Hazardous Waste Clean-up Information 網站,網址為 http://clu-in.org/
美國環保署 Reach It 網站,網址為 http://www.epareachit.org/
行政院環保署,全國土壤及地下水污染整治策略旗艦領航計畫,2014
行政院環保署,油品類儲槽系統土壤及地下水污染整治技術選取、系統設計要點與注意事項參考手冊,2006
行政院環境保護署,土壤及地下水污染整治法,中華民國99年2月3 日總統華總一義字第 09900024211 號,2010
行政院環境保護署,土壤及地下水油品類污染調查作業參考指引, EPA-25-III-05B-2015-002,2015
行政院環境保護署,土壤及地下水油品類污染整治作業參考指引,EPA-25-III-06B-2015-002 ,2015,網址為https://sgw.epa.gov.tw/
行政院環境保護署,水污染防治法,中華民國 104 年 2 月 4 日總統華總一義字第 10400014261 號令,2015

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2028-09-12
校外 Off-campus:開放下載的時間 available 2028-09-12

您的 IP(校外) 位址是 13.58.37.107
現在時間是 2025-05-20
論文校外開放下載的時間是 2028-09-12

Your IP address is 13.58.37.107
The current date is 2025-05-20
This thesis will be available to you on 2028-09-12.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2028-09-12

QR Code