論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2031-09-11
校外 Off-campus:開放下載的時間 available 2031-09-11
論文名稱 Title |
探討感光銀膠的底切現象 Understanding of undercut in photosensitive silver paste |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
91 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2021-08-25 |
繳交日期 Date of Submission |
2021-09-11 |
關鍵字 Keywords |
感光銀膠、底切、解析度、銀、光學微影 photosensitive silver paste, undercut, resolution, silver, photolithography |
||
統計 Statistics |
本論文已被瀏覽 178 次,被下載 0 次 The thesis/dissertation has been browsed 178 times, has been downloaded 0 times. |
中文摘要 |
近年來科技進步快速,電子產品內部需求儲存量漸增,我們需要將零件小型化、輕量化,以提升效能及得到更多的功能性,因此需要縮小導電線寬及空間。在工業上使用光學微影技術 (Photolithography)取代傳統網版印刷技術 (Screen printing),提升解析度的同時達到小型化、輕量化的目的。而在光學微影技術製造的導電線路中,經常有導電線路下層線寬比上層還窄,我們稱之為底切現象(Undercut)。 底切現象會導致線路與基板接觸不足,進而使線路容易從基板剝落,造成解析度降低、短路的發生。為了理解底切的機制並降低線路剝落發生的機率,本研究透過添加光敏劑,控制銀粉比例、曝光時間、及顯影時間等變因進行探討,觀察不同條件下底切的變化。我們發現在不同銀含量的感光銀膠 (Photosensitive silver paste)中,銀含量越高會使得底切現象更為嚴重,推測原因為曝光時感光銀膠中的銀粉會擋光,導致下層未固化,鹼洗過程中使底切現象更為劇烈。我們利用改變鹼洗時間證實了此推論,隨著鹼洗時間拉長,下層線寬越來越窄,以此推論下層為未固化層。接著我們試圖提升上層固化層厚度,降低下層未固化層在鹼洗中的影響,發現增加光起始劑比例使上層固化層交聯速率提升,上層固化厚度從36±1.7%提升至50±1.5 %,隨後透過添加奈米銀取代部分微米銀粉,使上層固化厚度進一步從50±1.5%提升至整體厚度完全固化,將底切率從1.9改善至1.1,並使解析度上升。 |
Abstract |
Recently, rapid development on the manufacturing technology of electronic devices require passive components that to be compacted into high density integrated circuit. This is done by reducing the width and space of conductive lines. Photolithography technology can be utilized to improve the line resolution of circuits, but highly lost and complicated. Undercut is phenomena that defined line patterns have a wider upper surface (denoted as upper layer) than the bottom (denoted as bottom layer). Undercut will lead to insufficient contact between the circuit and the substrate, causing the circuit to easily peel off from the substrate. This study explored the mechanism of undercuts under different conditions by understanding the influence of photosensitizers, proportions of silver powder, exposure time, and developing time. We found that the higher the silver contents, the higher degrees of undercut. The silver powder blocks the light during exposure, causing incomplete cure of bottom. By increasing the time, the line width of the lower layer becomes narrower, suggesting that the lower layer is incomplete cured. We found that increasing the proportion of photoinitiator increased the crosslinking rates of the upper layer. Thus the cured thickness of the upper layer increased from 36±1.7% to 50±1.5 %. When we used nano silver in replace of the micron silver powder, the cured thickness of the upper layer was further increased from 50±1.5% to nearly 100%, and the undercut index (width of upper layer/bottom layer) was improved from 1.9 to 1.1. |
目次 Table of Contents |
論文審定書 i 謝誌 ii 摘要 iii Abstract iv 圖目錄 viii 表目錄 xii 第一章、緒論 1 1.1 研究動機 1 1.2 研究背景 2 1.2.1 線路製作及限制 2 1.2.2 網版印刷(Screen printing)29工作原理 2 1.2.3 光學微影製程 5 1.2.4 感光銀膠的組成 7 1.2.5 感光銀膠的工作原理 9 1.3 高解析度線路的挑戰-底切(Undercut) 10 1.4 文獻回顧 11 1.4.1 光起始劑影響其解析度1 11 1.4.2 銀粒徑大小影響散射造成外擴43 12 1.4.1 感光銀膠中的無機物質造成底切 13 1.4.2 透光度問題導致底切 13 第二章、實驗與鑑定方法 15 2.1 實驗藥品 15 2.2 感光銀膠的製備 17 2.3 銀胺溶液製備 17 2.4 由草酸銀製備奈米銀 18 2.4.1 合成草酸銀59(Silver oxalate, Ag2C2O4) 18 2.4.2 奈米銀的製備8 18 2.5 光學微影實驗製程 18 2.5.1 網版印刷機 19 2.5.2 光罩 19 2.5.3 曝光機 20 2.5.4 顯影裝置 21 2.6 實驗鑑定方法 22 2.6.1 全反射傅立葉轉換紅外線光譜儀(Fourier-transform infrared spectroscopy attenuated total reflection) 22 2.6.2 核磁共振儀(Nuclear Magnetic Resonance) 22 2.6.3 鍍金機 (Gilding machine) 22 2.6.4 掃描式電子顯微鏡(Scanning electron microscope) 22 2.6.5 3-D光學顯微鏡(3-Dimension optical microscope) 22 2.6.6 二點式探測電阻量測儀(Two-point probe resistance meter) 23 2.6.7 熱重量分析儀 (Thermogravimetric Analysis) 23 2.6.8 X光繞射分析儀(X-ray diffraction) 23 第三章、研究結果 24 3.1 感光漿料底切機制之探討 24 3.2 不含銀感光漿料底切之探討 25 3.2.1 交聯程度對底切之影響 25 3.2.2 黃變對底切的影響 28 3.2.3 感光漿料不含銀形成底切的機制 30 3.3 感光漿料含銀底切機制之探討 35 3.3.1 不同銀含量之感光漿料對底切之影響 35 3.3.2 增加曝光時間對底切的影響 38 3.3.3 鹼洗時間對底切的影響 41 3.4 解決感光漿料含銀底切的方式 43 3.4.1 增加光起始劑以提升上層固化層厚度 43 3.4.2 光起始劑增加上層厚度的證據 47 3.4.3 壓低網版厚度解決底切 49 3.4.4 添加銀胺溶液取代部分銀粉來改善底切 51 3.4.5 添加奈米粉體取代部分銀粉來改善底切 54 3.4.6 體積電阻計算 58 第四章、研究結果討論 59 第五章、結論 68 參考文獻 69 |
參考文獻 References |
參考文獻 1. Park, S.-D.; Yoo, M. J.; Kang, N.-K.; Park, J.-C.; Lim, J.-K.; Kim, D.-K. Fabrication of Photoimageable Silver Paste for Low-Temperature Cofiring Using Acrylic Binder Polymers and Photosensitive Materials. Macromol. Res. 2004, 12, 391. 2. Hyun, W. J.; Lim, S.; Ahn, B. Y.; Lewis, J. A.; Frisbie, C. D.; Francis, L. F. Screen Printing of Highly Loaded Silver Inks on Plastic Substrates Using Silicon Stencils. ACS Appl. Mater. Interfaces 2015, 7, 12619. 3. Kim, S. H.; Kwon, Y.; Han, Y. S.; Hur, Y.; Kwak, G.; Woo, C. M.; Hur, B. K.; Park, L. S. Effect of photosensitivity in acrylic photoreactive electrode pastes on line width uniformity for large-sized plasma display panels. J. Appl. Polym. Sci. 2008, 107, 658. 4. Kim, S. H.; Han, Y. S.; Kwon, Y.; Kwak, G.; Kwon, O. H.; Park, L. S. Effects of the binder polymer and powder type on the resolution and edge curl of a silver electrode formed by a photolithographic process. J. Appl. Polym. Sci. 2009, 113, 2248. 5. Kim, S.-J.; Lee, J. M.; Lee, W.-J.; Kim, S.; Park, C. P.; Park, B.; In, I. Preparation of Sub-20-μm Conductive Silver Pattern Using Photosensitive Silver Paste. Chem. Lett. 2014, 43, 1855. 6. Pole‐Baker, M. E. Printed Circuits—Origins and Development. Circuit World 1984, 10, 9. 7. Liu, Y.-K.; Lee, M.-T. Laser Direct Synthesis and Patterning of Silver Nano/Microstructures on a Polymer Substrate. ACS Appl. Mater. Interfaces 2014, 6, 14576. 8. Yang, W.; Wang, C.; Arrighi, V. Effects of amine types on the properties of silver oxalate ink and the associated film morphology. J. Mater. Sci.: Mater. Electron. 2018, 29, 20895. 9. Walker, S. B.; Lewis, J. A. Reactive Silver Inks for Patterning High-Conductivity Features at Mild Temperatures. J. Am. Chem. Soc. 2012, 134, 1419. 10. Søndergaard, R.; Hösel, M.; Angmo, D.; Larsen-Olsen, T. T.; Krebs, F. C. Roll-to-roll fabrication of polymer solar cells. Mater. Today 2012, 15, 36. 11. Chun, S.; Grudinin, D.; Lee, D.; Kim, S.-H.; Yi, G.-R.; Hwang, I. Roll-to-Roll Printing of Silver Oxide Pastes and Low Temperature Conversion to Silver Patterns. Chem. Mater. 2009, 21, 343. 12. Zavanelli, N.; Yeo, W.-H. Advances in Screen Printing of Conductive Nanomaterials for Stretchable Electronics. ACS Omega 2021, 6, 9344. 13. Rong, Y.; Ming, Y.; Ji, W.; Li, D.; Mei, A.; Hu, Y.; Han, H. Toward Industrial-Scale Production of Perovskite Solar Cells: Screen Printing, Slot-Die Coating, and Emerging Techniques. J. Phys. Chem. Lett. 2018, 9, 2707. 14. Qu, J.; He, N.; Patil, S. V.; Wang, Y.; Banerjee, D.; Gao, W. Screen Printing of Graphene Oxide Patterns onto Viscose Nonwovens with Tunable Penetration Depth and Electrical Conductivity. ACS Appl. Mater. Interfaces 2019, 11, 14944. 15. Chen, S.; Liu, K.; Luo, Y.; Jia, D.; Gao, H.; Hu, G.; Liu, L. In situ preparation and sintering of silver nanoparticles for low-cost and highly reliable conductive adhesive. Int. J. Adhes. Adhes. 2013, 45, 138. 16. Perelaer, J.; Hendriks, C. E.; de Laat, A. W. M.; Schubert, U. S. One-step inkjet printing of conductive silver tracks on polymer substrates. Nanotechnology 2009, 20, 165303. 17. Achmatowicz, S.; Kiełbasiński, K.; Zwierkowska, E.; Wyżkiewicz, I.; Baltrušaitis, V.; Jakubowska, M. A new photoimageable platinum conductor. Microelectron. Reliab. 2009, 49, 579. 18. Tseng, L.-T.; Jhang, R.-H.; Ho, J.-Q.; Chen, C.-H. Molecular Approach To Enhance Thermal Conductivity in Electrically Conductive Adhesives. ACS Appl. Electron. Mater. 2019, 1, 1890. 19. Hinz, I.; Schulze, S.-H.; Barche, F.; Schak, M.; Wenger, F., Characterization of Electrical Conductive Adhesives (ECA) for the Photovoltaic-Industry. , 27th European Photovoltaic Solar Energy Conference, 24-28 Sept. 2012; 2012; pp 3474-3478. 20. Li, Y.; Wong, C. P. Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: Materials, processing, reliability and applications. Mater. Sci. Eng., R Rep. 2006, 51, 1. 21. Lu, D. D.; Wong, C. P., Electrically Conductive Adhesives (ECAs). In Materials for Advanced Packaging, Lu, D.; Wong, C. P., Eds. Springer US: Boston, MA, 2009; pp 365. 22. Yasuda, K.; Kim, J.-M.; Yasuda, M.; Fujimoto, K. Formation of a Self-Interconnected Joint using a Low-Melting-Point Alloy Adhesive. Mater. Trans. 2004, 45, 799. 23. Chandler, N.; Tyler, S. G. Ultra-fine feature printed circuits and multi-chip modules. Microelectron. J. 1995, 26, 393. 24. Hong, H.; Hu, J.; Yan, X. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags. ACS Appl. Mater. Interfaces 2019, 11, 27318. 25. Matsui, H.; Takeda, Y.; Tokito, S. Flexible and printed organic transistors: From materials to integrated circuits. Org. Electron. 2019, 75, 105432. 26. Matsuhisa, N.; Kaltenbrunner, M.; Yokota, T.; Jinno, H.; Kuribara, K.; Sekitani, T.; Someya, T. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 2015, 6, 7461. 27. Jabbour, G. E.; Radspinner, R.; Peyghambarian, N. Screen printing for the fabrication of organic light-emitting devices. IEEE J. Sel. Top. Quantum Electron. 2001, 7, 769. 28. Gonçalves, S.; Serrado-Nunes, J.; Oliveira, J.; Pereira, N.; Hilliou, L.; Costa, C. M.; Lanceros-Méndez, S. Environmentally Friendly Printable Piezoelectric Inks and Their Application in the Development of All-Printed Touch Screens. ACS Appl. Electron. Mater. 2019, 1, 1678. 29. Altay, B. N.; Turkani, V. S.; Pekarovicova, A.; Fleming, P. D.; Atashbar, M. Z.; Bolduc, M.; Cloutier, S. G. One-step photonic curing of screen-printed conductive Ni flake electrodes for use in flexible electronics. Sci. Rep. 2021, 11, 3393. 30. Shirai, M.; Okamura, H. UV-curable positive photoresists for screen printing plate. Polym. Int. 2016, 65, 362. 31. Moon, S.-Y.; Kim, J.-M. Chemistry of photolithographic imaging materials based on the chemical amplification concept. J. Photochem. Photobiol. C: Photochem. Rev. 2007, 8, 157. 32. Miyakawa, M.; Nakata, M.; Tsuji, H.; Fujisaki, Y. Simple and reliable direct patterning method for carbon-free solution-processed metal oxide TFTs. Sci. Rep. 2018, 8, 12825. 33. Harwell, J.; Burch, J.; Fikouras, A.; Gather, M. C.; Di Falco, A.; Samuel, I. D. W. Patterning Multicolor Hybrid Perovskite Films via Top-Down Lithography. ACS Nano 2019, 13, 3823. 34. Prasad, H.; Hashim, U.; Foo, K. L.; Adam, T.; Shafiq, M. Fabrication and Characterization of IDE Based Sensor Through Conventional Lithography Method. Adv. Mater. Res. 2013, 832, 517. 35. Ouyang, S.; Xie, Y.; Dongping, W.; Zhu, D.; Xu, X.; Tan, T.; Fong, H. H. Surface Patterning of PEDOT:PSS by Photolithography for Organic Electronic Devices. J. Nanomater. 2015, 2015, 1. 36. Berkoh, D.; Kulkarni, S. Challenges in Lift-Off Process Using CAMP Negative Photoresist in III–V IC Fabrication. IEEE Trans. Semicond. Manuf. 2019, 32, 513. 37. Yu, J.; Xu, N.; Liu, Z.; Wang, L. Novel One-Component Positive-Tone Chemically Amplified I-Line Molecular Glass Photoresists. ACS Appl. Mater. Interfaces 2012, 4, 2591. 38. Yu, J.; Xu, N.; Wei, Q.; Wang, L. Novel ester acetal polymers and their application for positive-tone chemically amplified i-line photoresists. J. Mater. Chem. C 2013, 1, 1160. 39. Kong, Q.; Wang, X.; Xia, L.; Wu, C.; Feng, Z.; Wang, M.; Zhao, J. Achieving Low Contact Resistance by Engineering a Metal–Graphene Interface Simply with Optical Lithography. ACS Appl. Mater. Interfaces 2017, 9, 21573. 40. Park, L.-S.; Choi, H.-S.; Im, M.-S.; Kim, H.-T.; Choi, S.-Y. 29.4: Photolithographic Method of Patterning Barrier Ribs for PDP. Dig. Tech. Pap. 2003, 34, 1015. 41. Cheng, W.-T.; Chih, Y. W.; Lin, C. Formulation and characterization of UV-light-curable electrically conductive pastes. J. Adhes. Sci. Technol. 2005, 19, 511. 42. Ketkar, S.; Umarji, G.; Phatak, G.; Ambekar, J.; Mulik, U.; Amalnerkar, D. P. Effect of glass content variation on properties of photoimageable silver conductor paste. Mater. Chem. Phys. 2006, 96, 145. 43. Jakubowska, M.; Achmatowicz, S.; Baltrušaitis, V.; Młożniak, A.; Wyżkiewicz, I.; Zwierkowska, E. Investigation on a new silver photoimageable conductor. Microelectron. Reliab. 2008, 48, 860. 44. 佐合佑一朗、高田重治。2019。感光性組成物、複合體、電子零件及電子零件的製造方法。中華民國發明專利第201932980號。. 45. Gu, H.; Ma, C.; Gu, J.; Guo, J.; Yan, X.; Huang, J.; Zhang, Q.; Guo, Z. An overview of multifunctional epoxy nanocomposites. J. Mater. Chem. C 2016, 4, 5890. 46. Ketkar, S. A.; Umarji, G. G.; Phatak, G. J.; Ambekar, J. D.; Mulik, U. P.; Amalnerkar, D. P. Effect of glass content variation on properties of photoimageable silver conductor paste. Mater. Chem. Phys. 2006, 96, 145. 47. Umarji, G. G.; Ketkar, S. A.; Phatak, G. J.; Seth, T.; Mulik, U. P.; Amalnerkar, D. P. Photoimageable silver paste for high density interconnection technology. Mater. Lett. 2005, 59, 503. 48. 陳立偉, 利用LED燈對感光性樹脂進行交聯性反應之應用及性質探討。國立中山大學材料與光電科學學系研究所碩士論文,高雄市。取自https://hdl.handle.net/11296/pr684n。 . 2013. 49. 蔡旻翰, 紫外光固化導電銀膠之研究。國立聯合大學能源工程學研究所碩士論文,苗栗縣。取自https://hdl.handle.net/11296/k5nn8x。 . 2015. 50. 小川善正、岩田行光、志水悠司、大石英司、小久見尙一郎、中村典永。2016。導電性積層體、觸控面板及導電性積層體之製造方法。中華民國發明專利第I702142號。. 51. 李俊昊、金貞延、朴眞佑、柳娥凜、李慧旼。2018。光敏性樹脂組成物、應用其之光敏性樹脂層與黑色柱間隔物。中華民國發明專利第I629565號。. 52. Allushi, A.; Kutahya, C.; Aydogan, C.; Kreutzer, J.; Yilmaz, G.; Yagci, Y. Conventional Type II photoinitiators as activators for photoinduced metal-free atom transfer radical polymerization. Polym. Chem. 2017, 8, 1972. 53. Palacios, M.; García, O.; Rodríguez-Hernández, J. Constructing Robust and Functional Micropatterns on Polystyrene Surfaces by Using Deep UV Irradiation. Langmuir 2013, 29, 2756. 54. Lin, H.; Wan, X.; Li, Z.; Jiang, X.; Wang, Q.; Yin, J. Photoreversible Resists for UV Nanoimprint Lithography (UV-NIL). ACS Appl. Mater. Interfaces 2010, 2, 2076. 55. Yoon, B.; Shin, H.; Kang, E.-M.; Cho, D. W.; Shin, K.; Chung, H.; Lee, C. W.; Kim, J.-M. Inkjet-Compatible Single-Component Polydiacetylene Precursors for Thermochromic Paper Sensors. ACS Appl. Mater. Interfaces 2013, 5, 4527. 56. 王沛雯, 紫外光硬化丙烯酸酯的研究。東海大學化學工程與材料工程學研究所碩士論文,台中市。取自https://hdl.handle.net/11296/xq824。 . 2010. 57. 垣添浩人。2019。感光性組成物、複合體、電子零件及電子零件的製造方法。中華民國發明專利第201940974號。. 58. Zhu, Z.; Ning, H.; Cai, W.; Wei, J.; Zhou, S.; Yao, R.; Lu, X.; Zhang, J.; Zhou, Z.; Peng, J. Morphology Modulation of Direct Inkjet Printing by Incorporating Polymers and Surfactants into a Sol–Gel Ink System. Langmuir 2018, 34, 6413. 59. 曾立婷, 添加含銀有機錯合物提升環氧樹脂導電膠之熱導性, 國立中山大學化學所碩士論文, 高雄市。https://hdl.handle.net/11296/qq4gwp。 . 2019. 60. Kempanichkul, A., Yellowness And Related Structural Changes,. 2019 4th Asia Color Association Conference, 5-8 Aug. 2008; 2008; pp 525-530. 61. Jeong, S. W.; Kim, W. S.; Lee, D. H.; Min, K. E.; Seo, K. H.; Kang, I. K.; Park, L. S. Photosensitive barrier rib paste for plasma display panel and photolithographic process. J. Appl. Polym. Sci. 2002, 85, 2092. 62. Zhang, T.; Dong, Q.-w.; Zhang, W.; Wei, J. Preparation and application of photosensitive copolymers for PDP barrier ribs formed by photolithography. Chin. J. Polym. Sci. 2013, 31, 444. 63. Kamoun, E. A.; El-Betany, A.; Menzel, H.; Chen, X. Influence of photoinitiator concentration and irradiation time on the crosslinking performance of visible-light activated pullulan-HEMA hydrogels. Int. J. Biol. Macromol. 2018, 120, 1884. 64. Lee, S. W.; Kwak, G.; Kwon, Y.; Kim, Y.-J.; Kim, K. H.; Lim, H.-R.; Gwak, S.-W.; Lee, S. C.; Han, Y. S. UV-curable resins for glass slimming applications, and their swelling properties in common organic solvents. Mol. Cryst. Liq. Cryst. 2017, 651, 170. 65. Fu, X.; Chen, J.; Zhang, J.; Fu, F.; Wu, C. Effect of penetration depth and particle size on detection of wheat flour adulterant using hyperspectral imaging. Biosyst. Eng. 2021, 204, 64. 66. Alkholidi, A. Free Space Optical Communications — Theory and Practices. Contemp. Issues Wirel. Commun. 2014, 159. 67. Jradi, S.; Balan, L.; Zeng, X.; Plain, J.; Lougnot, D.; Royer, P.; Bachelot, R.; Akil, S.; Soppera, O.; Vidal, L. Spatially controlled synthesis of silver nanoparticles and nanowires by photosensitized reduction. Nanotechnology 2010, 21, 95605. 68. Tsai, H.; Pitera, J. W.; Miyazoe, H.; Bangsaruntip, S.; Engelmann, S. U.; Liu, C.-C.; Cheng, J. Y.; Bucchignano, J. J.; Klaus, D. P.; Joseph, E. A.; Sanders, D. P.; Colburn, M. E.; Guillorn, M. A. Two-Dimensional Pattern Formation Using Graphoepitaxy of PS-b-PMMA Block Copolymers for Advanced FinFET Device and Circuit Fabrication. ACS Nano 2014, 8, 5227. 69. Selim, Y.; Mohamed, A. Role of Dyestuff in Improving Dye-Sensitized Solar Cell Performance. Renew. Energy Sustain. Dev. 2017, 3, 79. 70. Bhattacharjee, S. DLS and zeta potential – What they are and what they are not? J. Control. Release 2016, 235, 337. 71. Mayerhöfer, T. G.; Popp, J. Beer's law derived from electromagnetic theory. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 215, 345. 72. Blattau, N.; Barker, D.; Hillman, C., Lead Free Solder and Flex Cracking Failures in Ceramic Capacitors. 2004 24th Annual Capacitor and Resistor Technology Symposium, 29-1 April. 2004; 2004; pp 101-105. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2031-09-11 校外 Off-campus:開放下載的時間 available 2031-09-11 您的 IP(校外) 位址是 216.73.216.211 現在時間是 2025-05-23 論文校外開放下載的時間是 2031-09-11 Your IP address is 216.73.216.211 The current date is 2025-05-23 This thesis will be available to you on 2031-09-11. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2026-09-11 |
QR Code |