博碩士論文 etd-0811109-023332 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 翁鈴超(Ling-chao Weng) 電子郵件信箱 m964020003@student.nsysu.edu.tw
畢業系所 資訊管理學系研究所(Information Management)
畢業學位 碩士(Master) 畢業時期 97學年第2學期
論文名稱(中) 在行動P2P網路環境中的旅遊景點推薦   
論文名稱(英) On Recommending Tourist Attractions
in a Mobile P2P Environment
檔案
  • etd-0811109-023332.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:校內一年後公開,校外永不公開

    論文語文/頁數 英文/91
    統計 本論文已被瀏覽 5357 次,被下載 11 次
    摘要(中)   推薦技術的主要目的是協助人們從大量資料中發掘自己需要的,推薦系統協助我們過濾資訊,再呈現那些我們會感興趣的資訊供我們參考,隨著無線網路技術的發展以及手提裝置運算能力的增加,推薦系統也在這樣的環境下轉型。我們著重於行動點對點網路環境底下的旅遊推薦系統,此系統使用協同過濾演算法,目的是提供移動中的旅客即時的旅遊景點建議,我們讓系統使用者交換他們已拜訪景點的評分資料,整合這些資料並匯集其他旅客對景點的建議,以此進行推薦做為使用者拜訪下個景點時的參考。
      我們提出了六種資料交換方式,這些資料交換方式在同質及異質的實驗環境下被測試。實驗結果顯示,我們提出的資料交換方式與以內容為主的推薦方式相較,有較佳的推薦命中率;與只使用當面交換的資料來做推薦的方法相比,我們的資料交換方法也有較好的表現。最後我們對所有資料交換方法進行評估比較,最佳的方法應該要能夠進行好的推薦,同時維持適中的資料交換量。
    摘要(英)   Recommendation techniques are developed to uncover users‘ real needs among large volume of information. Recommender systems help us filter information and present those similar to our tastes. As wireless technology develops and mobile devices become more and more powerful, new recommender systems appear to adapt to new implementation environment. We focus on travel recommender systems implemented in a mobile P2P environment using collaborative filtering recommendation algorithms which intend to provide real-time suggestions to travelers when they are on the move. Using the concept of incorporating other travelers‘ suggestions to the next attraction, we let users exchange their ratings toward visited attractions and use these ratings as a basis of recommendation.
      We proposed six data exchange algorithms for travelers to exchange their ratings. The proposed methods were experimented in the homogeneous and heterogeneous environment. The experimental results show that the proposed data exchange methods have better recommendation hit ratio than content-based recommendation methods and better performance compared with other methods only using ratings of users when they meet face-to-face. Finally, all methods are compared and evaluated. An optimal method should be able to strike a balance between algorithm performance and the amount of data communication.
    關鍵字(中)
  • 旅遊推薦系統
  • 協同過濾
  • 行動點對點網路環境
  • 資料交換方式
  • 關鍵字(英)
  • Collaborative filtering
  • Travel recommender system
  • Mobile P2P environment
  • Data exchange method
  • 論文目次 Table of Contents
    CHAPTER 1 - Introduction ................................................................................................ 1
    1.1 Background ............................................................................................................... 1
    1.2 Motivation ................................................................................................................. 2
    1.3 Thesis Organization .................................................................................................. 3
    CHAPTER 2 - Literature Review ....................................................................................... 5
    2.1 Recommender Systems ............................................................................................. 5
    2.1.1 Content-based Recommendation Approach ...................................................... 6
    2.1.2 Collaborative Filtering Recommendation Approach ......................................... 7
    2.2 Travel Recommender Systems ................................................................................. 9
    2.3 Mobile Recommendation ........................................................................................ 12
    2.3.1 Mobile Ad Hoc Networks (MANETs) ............................................................ 14
    2.3.2 Social Mobile Service ...................................................................................... 16
    2.4 Distributed Recommendation ................................................................................. 19
    CHAPTER 3 - Data Exchanging Methods ....................................................................... 22
    3.1 The Methods ....................................................................................................... 22
    3.2 An Illustrating Example ...................................................................................... 29
    3.3 Recommendation Mechanisms ........................................................................... 39
    CHAPTER 4 –Preliminary Experiments and Results ....................................................... 42
    4.1 Simulation Model ................................................................................................... 42
    4.2 Simulation Environment ......................................................................................... 44
    4.3 Correlation-Thresholding and Best-N-Neighbors .................................................. 47
    4.4 Preliminary Experiments for Limited Propagation ................................................. 49
    4.4.1 Experimental Results ....................................................................................... 49
    CHAPTER 5 – Simulation Results and Evaluations ........................................................ 57
    5.1 Performance Metrics ............................................................................................... 57
    5.2 Comparing Content-based and Unconditional Data Exchange Methods ............... 59
    5.3 Homogeneous Simulation Environment ................................................................. 61
    5.4 Heterogeneous Simulation Environment ................................................................ 67
    5.4.1 Results and Evaluations of the Well-planned Users ........................................ 68
    5.4.2 Results and Evaluations of the Mis-planned Users .......................................... 71
    CHAPTER 6 – Conclusions.............................................................................................. 77
    Reference…………… ...................................................................................................... 79
    參考文獻 Reference
    Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender
    systems: A survey of the state-of-the-art and possible extensions. IEEE
    Transactions on Knowledge and Data Engineering, 17(6), 734-749.
    Alspector, J., Kolcz, A., & Karunanithi, N. (1998). Comparing feature-based and
    clique-based user models for movie selection. Proceedings of the Third ACM
    Conference on Digital Libraries, 11-18.
    Andronache, A., Brust, M. R., & Rothkugel, S. (2007). Hycast-podcast discovery in
    mobile networks. Proceedings of the 3rd ACM Workshop on Wireless Multimedia
    Networking and Performance Modeling, 27-34.
    Balabanovic, M., & Shoham, Y. (1997). Content-based, collaborative
    recommendation. Communications of the ACM, 40(3), 67.
    Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive
    algorithms for collaborative filtering. Proceedings of the Fourteenth Conference
    on Uncertainty in Artificial Intelligence, 43-52.
    Brunato, M., & Battiti, R. (2003). PILGRIM: A location broker and mobility-aware
    recommendation system. Pervasive Computing and Communications,
    2003.(PerCom 2003). Proceedings of the First IEEE International Conference on,
    265-272.
    Cheverst, K., Davies, N., Mitchell, K., Friday, A., & Efstratiou, C. (2000).
    Developing a context-aware electronic tourist guide: Some issues and experiences.
    Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
    17-24.
    De Spindler, R., Norrie, M. C., Grossniklaus, M., & Signer, B. (2006).
    Spatio-temporal proximity as a basis for collaborative filtering in mobile
    environments. Proceedings of the CAISE*06 Workshop on Ubiquitous Mobile
    Information and Collaboration Systems, Luxemburg.
    Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative
    filtering to weave an information tapestry. Communications of the ACM, 35,
    61-70.
    Gratz, P., Andronache, A., & Rothkugel, S. (2008). Ad hoc collaborative filtering for
    mobile networks. IEEE International Conference on Sensor Networks,
    Ubiquitous and Trustworthy Computing, 2008. SUTC'08, 355-360.
    Gui, C., & Mohapatra, P. (2008). A framework for self-healing and optimizing
    routing techniques for mobile ad hoc networks. Wireless Networks, 14(1), 29-46.
    Hakansson, M., Rost, M., Jacobsson, M., & Holmquist, L. E. (2007). Facilitating
    mobile music sharing and social interaction with push! music. HAWAII
    INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, , 40(3) 1474.
    Hayes, A., & Wilson, D. (2004). Peer-to-peer information sharing in a mobile ad hoc
    environment. Sixth IEEE Workshop on Mobile Computing Systems and
    Applications, 2004. WMCSA 2004, 154-162.
    Herlocker, J., Konstan, J. A., & Riedl, J. (2002). An empirical analysis of design
    choices in neighborhood-based collaborative filtering algorithms. Information
    Retrieval, 5(4), 287-310.
    Herlocker, J. L., Konstan, J. A., & Riedl, J. (1999). An algorithmic framework for
    performing collaborative filtering. Proceedings of the 22nd Annual International
    ACM SIGIR Conference on Research and Development in Information Retrieval,
    230-237.
    Jacobsson, M., Rost, M., & Holmquist, L. E. (2006). When media gets wise:
    Collaborative filtering with mobile media agents. Proceedings of the 11th
    International Conference on Intelligent User Interfaces, 291-293.
    Miller, B. N., Albert, I., Lam, S. K., Konstan, J. A., & Riedl, J. (2003). Movielens
    unplugged: Experiences with an occasionally connected recommender system.
    Proceedings of the 8th International Conference on Intelligent User Interfaces,
    263-266.
    Miller, B. N., Konstan, J. A., & Riedl, J. (2004). Pocketlens: Toward a personal
    recommender system. ACM Transactions on Information Systems, 22(3),
    437-476.
    Nguyen, Q. N., Cavada, D., & Ricci, F. (2003). Trip@dvice mobile extension in a
    case-based recommender system. Proceedings of the 2nd International
    Conference on Mobile Business, 345-356.
    Nützel, J., & Kubek, M. (2006). A mobile peer-to-peer application for distributed
    recommendation and re-sale of music. Automated Production of Cross Media
    Content for Multi-Channel Distribution, 2006. AXMEDIS'06, 93-98.
    Paulos, E., & Goodman, E. (2004). The familiar stranger: Anxiety, comfort, and play
    in public places. Conference on Human Factors in Computing Systems, 223 -
    230.
    Pazzani, M. J. (1999). A framework for collaborative, content-based and demographic
    filtering. Artificial Intelligence Review, 13(5), 393-408.
    Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the
    ACM, 40(3), 57.
    Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens:
    An open architecture for collaborative filtering of netnews. Proceedings of the
    1994 ACM Conference on Computer Supported Cooperative Work, 175-186.
    Rudström, Å ., Svensson, M., Cöster, R., & Höök, K. (2004). MobiTip: Using
    bluetooth as a mediator of social context. Ubicomp 2004 Adjunct Proceedings.
    Schafer, J. B., Konstan, J., & Riedi, J. (1999). Recommender systems in e-commerce.
    Proceedings of the 1st ACM Conference on Electronic Commerce, 158-166.
    Stabb, S., Werther, H., Ricci, F., Zipf, A., Gretzel, U., Fesenmaier, D., et al. (2002).
    Intelligent systems for tourism. IEEE Intelligent Systems, 17(6), 53-66.
    Van Der Merwe, J., Dawoud, D., & McDonald, S. (2007). A survey on peer-to-peer
    key management for mobile ad hoc networks. ACM Computing Surveys, 39(1).
    Van Setten, M., Pokraev, S., & Koolwaaij, J. (2004). Context-aware
    recommendations in the mobile tourist application COMPASS. Lecture Notes in
    Computer Science, , 235-244.
    Wang, J., Pouwelse, J., Lagendijk, R. L., & Reinders, M. J. T. (2006). Distributed
    collaborative filtering for peer-to-peer file sharing systems. Proceedings of the
    2006 ACM Symposium on Applied Computing, 1026-1030.
    Wohltorf, J., Cissee, R., & Rieger, A. (2005). BerlinTainment: An agent-based
    context-aware entertainment planning system. IEEE Communications Magazine,
    43(6), 102-109.
    Wolfson, O., Xu, B., & Yin, H. (2005). Dissemination of spatial-temporal information
    in mobile networks with hotspots. Databases, information systems, and
    peer-to-peer computing (pp. 185-199) Springer.
    Zhao, W., Ammar, M., & Zegura, E. (2004). A message ferrying approach for data
    delivery in sparse mobile ad hoc networks. Proceedings of the 5th ACM
    International Symposium on Mobile Ad Hoc Networking and Computing,
    187-198.
    口試委員
  • 林福仁 - 召集委員
  • 徐士傑 - 委員
  • 楊婉秀 - 指導教授
  • 黃三益 - 指導教授
  • 口試日期 2009-06-24 繳交日期 2009-08-11

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫