論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available
論文名稱 Title |
可提升天線增益之多孔徑超穎材料天線罩及共平面結構雙頻天線罩設計 Antenna Gain Enhancement with More Subwavelength Holes and Dual-Band Design with Coplanar Structure of Metamaterial Radomes |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
74 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2010-06-22 |
繳交日期 Date of Submission |
2010-07-28 |
關鍵字 Keywords |
天線罩、單負超穎材料、雙頻、超穎材料 Single-negative metamaterial, Radome, Metamaterial, Dual-band |
||
統計 Statistics |
本論文已被瀏覽 5771 次,被下載 0 次 The thesis/dissertation has been browsed 5771 times, has been downloaded 0 times. |
中文摘要 |
在本論文中,我們設計了超穎材料天線罩來提升天線的增益。由於定點通訊上需要高指向性的天線輻射,傳統使用陣列天線或反射式天線有其饋入設計複雜以及天線尺寸過大的缺點,我們提出較簡單的超穎材料天線罩來達成增加天線指向性的目的。 透過波導管鏡像法的等效,我們發現在四個交叉I型中的孔徑結構具有匯集電磁波的特性。在相同尺寸的天線罩上,較多孔徑的天線罩能提供更多的提升增益效果,我們設計9孔徑的天線罩能提升天線增益多達3.5 dB。另外我們使用Fabry-Perot Cavity (FPC)的概念,在相位的建設性干涉條件下,找出天線罩與天線間最適合的距離。 而現今通訊系統大多支援雙頻甚至多頻操作,為了符合實際應用面上的需求,我們設計了可使用於2.5 GHz和3.5 GHz 的WiMAX的共平面雙頻天線罩。此結構具有獨立調整某一頻帶的特性,可依不同頻帶的需求各自作變動。此共平面雙頻結構在兩頻帶分別可提升天線增益1.7 dB和2.1 dB。 |
Abstract |
In the thesis, we designed a metamaterial radome to increase the antenna gain. Owing to the need of high-directivity radiation in fix-point communications, antenna array and reflective antenna had been used to increase the directivity of antenna traditionally. Complicated feed and huge antenna size are the disadvantages of these techniques. We proposed a simpler metamaterial radome to increase the antenna gain. We find the subwavelength-hole structure formed by four Jerusalem cross structures can collimate electromagnetic wave originally spreading out from the holes. With the same size, multiple subwavelength holes in metamaterial radome can further enhance the antenna gain. We showed that metamaterial radome with 9 subwavelength holes can improve the gain by about 3.5 dB. In addition, we applied the concept of Fabry-Perot Cavity (FPC) to find the suitable distance between the radome and the antenna. When the resulting electromagnetic waves are in-phase, the radome can increase the antenna gain effectively. Recently, high-directivity radiation in fix-point communications is required and in the meantime multi-mode communication systems have become more and more popular. For practical purposes, we designed a coplanar dual-band metamaterial radome to be operated at 2.5 GHz and 3.5 GHz for WiMAX. This structure allows adjustment of its characteristics independently at each band. This coplanar dual-band radome can enhance the antenna gain by about 1.74 dB and 2.08 dB at 2.5 GHz and 3.5 GHz, respectively. |
目次 Table of Contents |
誌謝........................................................I 中文摘要................................................III 英文摘要................................................IV 目錄........................................................V 圖表目錄................................................VI 第一章 序論...................................1 1-1 研究動機...........................1 1-2 超穎材料簡介...................1 1-3 相關研究概況...................9 1-4 研究方法...........................10 1-5 論文大綱...........................10 第二章 超穎材料單位晶胞分析...12 2-1 週期性波導管結構...........12 2-2 極化和傳播方向與超穎材料之影響....15 2-3 雙頻負介電常數超穎材料設計............18 2-4 雙頻負導磁係數超穎材料設計............22 第三章 多孔徑超穎材料天線罩...26 3-1 單位晶胞設計...................26 3-2 孔徑內匯集電磁波現象...30 3-3 不同孔徑數之天線罩與天線增益之比較 32 3-4 天線罩與天線間距探討...35 3-5 實作與討論.......................40 第四章 共平面雙頻天線罩...........43 4-1 共平面雙頻單位晶胞設計....................43 4-2 天線罩阻抗匹配....................................46 4-3 共平面結構用於雙頻微帶天線............48 4-4 實作與量測.......................51 第五章 結論...................................57 參考文獻 ...........................................59 附錄 利用S參數萃取等效結構參數..............61 |
參考文獻 References |
[1] S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett., vol. 89, no 21, pp. 213902-1–213902-4, Nov. 2002. [2] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ ,” Sov. Phys. Usp., vol. 10, no. 4, pp. 509–514, Jan.–Feb. 1968. [3] J. B. Pendry, “Low-frequency plasmons in thin wire structures,” J. Phys.: Condens. Matter, 10, pp. 4785–4809, Mar. 1998. [4] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,”Phys. Rev. Lett., vol. 84, no. 18, pp.4184–4187, May. 2000. [5] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech., vol. 47, pp. 2075–2083, Nov. 1999. [6] R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, pp. 77–79, Apr. 2001. [7] Q. Wu and P. Pan, “A novel flat lens horn antenna designed based on zero refraction principle of metamaterials,” Appl. Phys., vol. A 87, no. 2, pp. 151–156, May. 2007. [8] X. Chen, T. M. Grzegorczyk, B. –I. Wu, J. Pacheco, Jr., and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev E70.,016608, 2004. [9] R. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. Antennas Propag., vol.51, pp.1516–1529, Jul. 2003. [10] R. F. Harrington, Time-Harmonic Electromagnetic Fields. IEEE Press Series on Electromagnetic Wave Theory, 1977. [11] N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys., Vol. 84, No 15, pp. 2943–2945, Apr. 2004. [12] H. Chen, L. Ran, J. Huangfu, X. Zhang, and K. Chen, “Left-handed materials composed of only S-shaped resonators,” Phys. Rev, E70., 057605, 2004. [13] M. Silveirinha, and N. Engheta, “Tunneling of electromagnetic energy through subwavelength ehannels and bends using ε-near-zero materials,” Phys. Rev, Lett., vol. 97, p.157403, 2006. [14] D. Kim and J. I. Choi, “Analysis of a high-gain Fabry-Perot cavity antnna with an FSS superstrate: effective medium approach,” Prog. Electromagnetics Res. Lett., vol. 7, 59–68, 2009. [15] R. Gardelli, M. Albani, and F. Capolino, “Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement,” IEEE Trans. Antennas Propag., vol. 54, No. 7, 1979–1990, Jul. 2006. [16] Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, “Application of electromagnetic bandgap (EBG) superstrates with controllable defects for a class of patch antenna as spatial angular filters,” IEEE Trans. Antennas Propag., vol. 53, pp 224–235, 2009. [17] Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, “Design of a high-directivity Electromagnetic Band Gap (EBG) resonator antenna using a frequency-selective surface (FSS) superstrate,” Micro. and Opt. Technol. Lett., vol. 43, pp 462–467, 2004. [18] K. S. Chen, K. H. Lin, and H. L. Su, “Microstrip antenna gain enhancement by metamaterial radome with more subwavelength holes,” presented at Asia-Pacific Microwave Conference, Singapore, pp. 790–792, Dec. 2009. [19] K.-L. Wong, Planar Antennas for Wireless Communications, John Wiley & Sons, New York, USA, Jan. 2003. [20] Ricardo Marques, Ferran Martin, and Mario Sorolla, Metamaterials with Negative Parameters, Wiley Press, New Jersey, 2007. [21] G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of Directive Radiation From a Line Source in a Metamaterial Slab With Low Permittivity,” IEEE Trans. Antennas Propag., vol. 54, pp 1017–1030, Mar. 2006. [22] P. Burghignoli, G. Lovat, F. Capolino, D. R. Jackson, and D. R. Wilton, “Directive leaky-wave radiation from a dipole source in a wire-medium slab,” IEEE Trans. Antennas Propag., vol. 56, pp 1329–1339, May. 2008. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外均不公開 not available 開放時間 Available: 校內 Campus:永不公開 not available 校外 Off-campus:永不公開 not available 您的 IP(校外) 位址是 216.73.216.187 論文開放下載的時間是 校外不公開 Your IP address is 216.73.216.187 This thesis will be available to you on Indicate off-campus access is not available. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |