博碩士論文 etd-0726116-161600 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 郭雅玲(Ya-Ling Guo) 電子郵件信箱 E-mail 資料不公開
畢業系所 海洋科學系研究所(Department of Oceanography)
畢業學位 碩士(Master) 畢業時期 105學年第1學期
論文名稱(中) 台灣變質岩正烷類的分子組成
論文名稱(英) Molecular Composition of n-Alkanes in the Metamorphic Rocks of Taiwan
檔案
  • etd-0726116-161600.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    紙本論文:5 年後公開 (2021-08-29 公開)

    電子論文:使用者自訂權限:校內 5 年後、校外 5 年後公開

    論文語文/頁數 英文/63
    統計 本論文已被瀏覽 5293 次,被下載 0 次
    摘要(中) 主要源自光合作用的生物,長碳鏈正烷類被廣泛的應用在古氣候重建的研究中;而對於正烷類在當代陸棚-陸坡系統分佈的研究,則是讓此一替代指標在古環境研究中獲得適當解釋的基礎。然而,與其他已發表的系統迥異的是,臺灣海峽表層沉積物中的正烷類缺乏奇數碳的優勢。由於此現象可追溯至河流沉積物,前人推測可能是陡峭山溪型河川攜入大量岩石源正烷類、進而稀釋植物源訊號所造成,但此一假設尚未獲得驗證。本研究的目的為分析變質岩中正烷類的分子組成,提供檢驗此假設的基礎資料。結果發現,隨著變質程度增加,岩石中的正烷類總濃度下降,平均碳鏈長變短,與短碳鏈正烷類的比例增加,碳優勢指數變質度接趨近於1,意即無奇數碳的優勢。本研究進一步建立了一個以碳優勢指數與有機碳正規化正烷類濃度為參數的混合模型,並估算出岩石源正烷類在濁水溪河流沉積物的貢獻度為48到100%。
    摘要(英) Derived mainly from phototrophic organisms, n-alkanes are one of the most widely employed compound groups in paleoclimate reconstruction. The modern distribution of n-alkanes has been investigated in several shelf-slope systems to serve as the basis for proper paleoenvironmental interpretation of this proxy. However, the lack of odd-over-even preference in carbon number in the n-alkanes from the Taiwan Strait surface sediment distinguishes this setting from other published systems. As such a feature can be tracked back to the river sediment, it has been postulated that the strong erosion of the steep mountain rivers is responsible for diluting plant signals by lithic n-alkanes, but no rock samples have ever been examined to verify the hypothesis. The aim of this study is to examine the molecular composition of n-alkanes in the metamorphic rocks of Taiwan. The results show that as the metamorphic grade increased, the total concentration of n-alkanes became lower, the average chain length shortened, the proportion of short-chain n-alkanes was elevated, and the carbon preference index value approached 1, indicating no odd-over-even preference. A mixing model was developed based on the parameters of CPI and TOC-normalized n-alkane concentration, and the estimated contribution of lithic source was between 48 to 100% to the n-alkane pools in the Zhoushui River sediments
    關鍵字(中)
  • 台灣
  • 混合模型
  • 變質岩
  • 正烷類
  • 關鍵字(英)
  • Taiwan
  • mixing model
  • metamorphic rocks
  • n-alkane
  • 論文目次 Contents
    Acknowledgements                                i
    摘要                                    iii
    Abstract                                    iv
    Contents                                    v
    Chapter 1. Introduction                              1
    Chapter 2. Material and methods                          6
    2.1. Geological setting of the study area                      6
    2.2. Sample collection and pretreatment                      8
    2.3. Preparation for lipid analysis                         9
    2.4. Blank tests                               10
    2.5. Bulk analyses                              11
    2.6. Instrumentation                              12
    Chapter 3. Results                                16
    3.1. n-Alkane contamination                          16
    3.2. Molecular composition of n-alkanes                     17
    3.3. Concentrations and stable isotopic values of carbonate and TOC          19
    Chapter 4. Discussion                              26
    4.1. Contamination control                           27
    4.2. Alteration of n-alkanes during metamorphism                  28
    4.3. Fraction of fossil n-alkanes in the Zhoushui River sediment          31
    Chapter 5. Conclusion                              39
    References                                   41
    Appendix                                   45
    參考文獻 Barnes, M. A., and Barnes, W. C., 1978. Organic compounds in lake sediments. In: Lerman, A. (Ed), Lakes: Chemistry, Geology, Physics. Springer-Verlag, Berlin, 127-152.
    Boudou, J.P., Schimmelmann, A., Ader, M., Mastalerz, M., Sebilo, M., and Gengembre, L., 2008. Organic nitrogen chemistry during low-grade metamorphism. Geochimica et Cosmochimica Acta, 72, 1199-1221.
    Bray, E.E., and Evans, E.D., 1961. Distribution of n-paraffins as a clue ro recognition of source beds. Geochimica et Cosmochimica Acta, 22, 2-15.
    Brock, J.J., 2011. Millimeter-scale concentration gradients of hydrocarbons in Archean shales: Live-oil escape or fingerprint of contamination? Geochimica et Cosmochimica Acta, 75, 3196-3213.
    Chen, C. H., and Wang, C. H., 1995. Special Publication of the Central Geological Survey. Taipei. Central Geological Survey, MOEA. 
    Clark Jr., R. C., and Blumer, M., 1967. Distribution of n-paraffins in marine organisms and sediments. Limnology and Oceanography, 12, 79-87.
    Cranwell, P.A., 1972. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshwat. Bio., 3, 259-265.
    Dal Piaz, G.V., Bistacchi, A., and Massironi, M., 2003. Geological outline of the Alps. Episodes, 26, 175-180.
    Eglinton, G., and Hamilton, R. J., 1967. Leaf epicuticular waxes. Science, 156, 1322-1335.
    Ekpo, B.O., Oyo-Ita, O.E., and Wehner, H., 2005. Even-n-alkane/alkene predominances in surface sediments from the Calabar River, SE Niger Delta, Nigeria. Naturwissenschaften, 92, 341-346.
    Fehling, E., and Mukherjee, K.D., 1991. Acyl-CoA elongase from a higher plant (Lunaria annua): Metabolic internmediates of verylong-chain acyl-CoA products and substrate specificity. Biochimica et Biophysica Acta, 1082, 239-246.
    Grimalt, J., and Albaiges J., 1987. Sources and occurrence of C12-C22 n-alkane distribution with even carbon-number preference in sedimentary environments. Geochimica et Cosmochimica Acta, 51, 1379-1384.
    Ishiwatari, R., Ishiwatari, M., Rohrback, B.G., and Kaplan, I.R., 1977. Thermal alteration experiments on organic matter from recent marine sediments in relation to petroleum genesis. Geochimica et Cosmochimica Acta, 41, 815-828.
    Hallmann, C., Kelly, A.E., Gupta, S.N., and Summons, R.E., 2011. Reconstructing deep-time biology with molecular fossils. Quantifying the evolution of early life, topic in Geobiology 36, DOI 10.1007/978-94-007-0680-4_14.
    Hilton, R.G., Galy, A., Hovius, N., Horng, M.J., and Chen, H., 2011. Efficient transport of fossil organic carbon to the ocean by steep mountain rivers: An orogenic carbon sequestration mechanism. Geology, 39, 71-74.
    Hilton, R.G., Galy, A., Hovius, N., Horng, M.J., and Chen, H., 2010. The isotopic composition of particulate organic carbon in mountain rivers of Taiwan. Geochimica et Cosmochimica Acta, 74, 3164-3181.
    Ho, C.S., 1986. A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125, 1-16.
    Huang, Y.S., Dupont, L., Sarnthein, M., Hayes, J.M., and Eglinton, G., 2000. Mapping of C4 plant input from North West Africa into North East Atlantic sediments. Geochimica et Cosmochimica Acta, 64, 3505-3513.
    Huh, C.A., Chen, W., Hsu, F.H., Su, C.C., Chiu, J.K., Lin, S., Liu, C.S., and Huang, B.J., 2011. Modern (< 100 years) sedimentation in the Taiwan Strait: Rates and source to sinkpathways elucidated from radionuclides and particle size distribution. Continental shelf research, 31, 47-63.
    Jeng, W.L., and Huh, C.A., 2006. A comparison of sediments aliphatic hydrocarbon distribution between the southern Okinawa Trough and a nearby river with high sediment discharge. Estuarine, coastal and shelf science, 66, 21-224.
    Kao, S.J., and Liu, K.K., 2000. Stable carbon and nitrogen isotope systematics in a human-disturb watershed (Langyang-His) in Taiwan and the estimation of biogenic particulate organic carbon and nitrogen fluxes. Global biochemical cycles, 14, 189-198.
    Kawka, O.E., and Simoneit, B.R.T., 1987. Survey of hydrothermally-generated petroleums from the Guaymas Basin spreading center. Org. Geochem., 11, 311-328.
    Killops, S. and Killops, V., 2005. Introduction to organic geochemistry. Blackwell publishing Ltd.
    Kuzmic’, A.E., Radoševic’, M., Bogdanic’, G., Sric’a, V., and Vukovic’, R., 2008. Studies on the influence of long chain acrylic esters polymers with polar monomers as crude oil flow improver additives. Fuel, 87, 2943-2950.
    Liu, J.P., Liu, C.S., Xu, K.H., Milliman, J.D., Chiu, J.K., Kao, S.J., and Lin, S.W., 2008. Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology, 256, 65-76.
    Liu, J.T., Liu, K.J., and Huang, J.C., 2002. The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan. Marine geology, 181, 357-386.
    Lu, J.T., 2013. Distribution and characteristics of saturated aliphatic alkanes in Zhoushui river and Taiwan Strait sediments. Department of Oceanography, National Sun Yat-sen University, Master thesis, 155 pages.
    Nichols, J.E., Booth, R.K., Jackson, S.T., Pendall, E.G., and Huang, Y.S., 2006. Paleohydrologic reconstruction based on n-alkane distribution in ombrothrophic peat. Organic geochemistry, 37, 1505-1513.
    Oro, J., Tornabene, T. G., Nooner, D. W., and Gelpi, E., 1967. Aliphatic hydrocarbons and fatty acids of some marine and freshwater microorganisms. Journal of Bacteriology, 93, 1811-1818.
    Peters, K.E., and Moldowan J.M., 1993. The biomarker guide. Prentice Hall Inc.
    Rieley, G., Collier, R. J., Jones, D. M., and Eglinton, G., 1991. The biogeochemistry of Ellesmere Lake, U.K.-I : source correlation of leaf wax inputs to the sedimentary recird. Organic Geochemistry, 17, 901-912.
    Rommerskirchen, F., Eglinton, G., Dupont, L., Güntner, U., Wenzel, C., anf Rullkotter, J., 2003. A north to south transect of Holocene southeast Atlantic continental margin sediments: Relationship between aerosol transport and compound-specific δ13C land plant biomarker and pollen records. Geochemistry Geophysics Geosystems, 4, 1101, doi:10.1029/2003GC000541.
    Schimel, D.S., 1995. Terrestrial ecosystems and the carbon cycle. Global change biology, 1, 77-91.
    Schmit, F., Hinrich, K. U., and Elvert, M., 2010. Source, transport, and partitioning of organic matter at a highly dynamic continental margin. Marine Chemistry, 118, 37-55.
    Schwab, V., Spangenberg, J.E., and Grimalt, J.O., 2004. Chemical and carbon isotopic evolution of hydrocarbons during prograde metamorphism from 100˚C to 550˚C: Case study in the Liassic black shale formation of Central Swiss Alps. Geochimica et Cosmochimica Acta, 69, 1825-1840.
    Sherman, L.S., Waldbauer, J.R., and Summons, R.E., 2007. Improved methods for isolating and validating indigenous biomarker in Precambrian rocks. Organic Geochemistry, 38, 1987-2000.
    Sheu, D.D., Lee, W.Y., Wang, C.H., Wei, C.L., Chen, C.T.A, Cherng, C., and Huang, M.H., 1996. Depth distribution of δ13C of dissolved ΣCO2 in seawater off eastern Taiwan: effects of the Kuoshio current and its associated upwelling phenomenon. Continental shelf research, 16, 1609-1619.
    Simoneit, B.R.T., Mazurek, M.A., Brenner, S., Crisp, P.T., and Kaplan, I.R., 1979. Organic geochemistry of recent sediments from Guaymas Basin, Gulf of California. Deep-sea research, 26A, 879-891.
    Sobeih, K.L., Baron, M., and Gonzalez-Rodriguez, J., 2008. Recent trends and developments in pyrolysis-gas chromatography. Journal of chromatography A, 1186, 51-66.
    Stallard, R.F., 1998. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erision to carbon burial. Global biogeochemical cycles, 12, 231-257.
    Suppe, J., 1981. Mechanisms of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China 4, 67-89.
    Teng, L.S., 1990. Late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183, 57-76..
    Yui, T.F., 2005. Isotopic composition of carbonaceous material in metamorphic rocks from the mountain belt of Taiwan. International Geology Review, 47, 310-325.
    Yui, T.F., Kao, S.J., and Wu, T.W., 2008. Nitrogen and N-isotope variation during low-grade metamorphism of the Taiwan mountain belt. Geochemical Journal, 43, 15-27.
    Walker, J.D., and Colwell, R.R., 1976. Long-chain n-alkanes occurring during microbial degradation of petroleum. Can. J. Microbil., 22, 886-891.
    Zhao, M., Eglinton, G., Haslett, S.K., Jordan, R.W., Sarnthein, M., and Zhang, Z., 2000. Marine and terrestrial biomarker records for the last 35,000 years at ODP site 658C off NW Africa. Organic geochemistry, 31, 919-930.
    Zhang, J., Wu, Y., Jennerjahn, T.C., Ittekkot, V., and He, O., 2007. Distribution of organic matter in the Changjiang (Yangtze River) estuary and their stable carbon and nitrogen isotopic ratios: Implication for source discrimination and sedimentary dynamics. Marine Chemistry, 106, 111-126.
    Zhu, C., Wagner, T., Pan, J. M., and Pancost R. D., 2011. Multiple source and extensive degradation of terrestrial sedimentary organic matter across an energetic, wide continental shelf. Geochemistry Geophysics Geosystems, 12, Q08011, doi:10.1029/2011GC003506.
    口試委員
  • 劉組乾 - 召集委員
  • 張詠斌 - 委員
  • 王珮玲 - 委員
  • 林玉詩 - 指導教授
  • 口試日期 2016-08-26 繳交日期 2016-08-29

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫