博碩士論文 etd-0726104-145903 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 賴裕倉(Yu-Tsang Lai) 電子郵件信箱 E-mail 資料不公開
畢業系所 資訊管理學系研究所(Information Management)
畢業學位 碩士(Master) 畢業時期 92學年第2學期
論文名稱(中) 產品推薦方式與認知風格對使用者滿意度之影響
論文名稱(英) Effect of Recommendation Interface and Cognitive Styles on User Satisfaction
檔案
  • etd-0726104-145903.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:校內一年後公開,校外永不公開

    論文語文/頁數 中文/80
    統計 本論文已被瀏覽 5389 次,被下載 42 次
    摘要(中) 過去推薦系統的績效衡量多偏重於系統面,例如Leng(1995)提出的NewsWeeder用準確度(Precision)來作為績效評估的指標、Syskill&Webert用分類正確度(Accuracy)來作為績效評估的指標、GroupsLen用系統的回應時間(Response Time)來作為推薦系統績效評估的指標。並未考量使用者的觀點,即此推薦方式是否滿足使用者需要、是否容易使用、是否提供使用者充份的資訊,而且也沒有考量每個人資訊處理方式的差異,因此本研究的主要目的在探討不同推薦方式與認知風格對使用者滿意度的影響。
      本研究在推薦方式方面,採用Schafer (1999)提出在電子商務網站常見的七種產品推薦方式(Recommendation Interface)之中的兩種,即為數字評分與文字評論兩種。而認知風格則分為直覺型與分析型使用者。使用者滿意度的衡量主要修改Doll and Torkzadea (1988)所提出的使用者滿意度量表。
      研究結果發現不同的推薦方式與認知風格對使用者滿意度有顯著影響。若不考量認知風格的影響,一般使用者對於文字評論推薦方式有較高滿意度。如考量認知風格的影響,則直覺型的使用者對數字評分型有較高的滿意度,而分析型的使用者對文字評論型有較高的滿意度。而本研究結果,在學術方面,可提供認知心理領域、資訊推薦領域與資訊管理的學者作進一步的探討;在實務方面,可協助網站業者在實作推薦服務的依據。
    摘要(英) In terms of performance measurement on Recommendation Systems, previous research focuses on system viewpoints. For Example, Leng’s NewsWeeder(1995) measure recommendation performance by precision;Syskill&Webert measure recommendation performance by classification accuracy;GroupLen measure recommendation performance by system response time。We bring up a user-oriented viewpoint which means that whether the recommendation interface satisfies user’s needs, whether it is easy to use, and whether it provides sufficient information to user. In the meantime, prvious research didn’t think over the difference of everyone’s information processing style。Therefore, our research objective focuses on effect of cognitive styles and recommendation style on user satisfaction。
     In the construct of recommendation interface, we adopt average rating and text comment。And in the construct of cognitive style, we classify it with
    intuitive and analytical users。The measurement of user satisfaction adopts Doll and Torkzadea (1988) questionnaire and refines it。
     The research result finds that different recommendation interfaces and cognitive styles have a significant impact on user satisfaction。If we don’t think over effect of cognitive styles, there is higher user satisfaction on text comment。If we think over effect of cognitive styles, intuitive user has higher user satisfaction on average rating;analytical user has higher user satisfaction on text comment。Our research contribution is as follow。In academic aspect, our research finding can provide researcher in cognitive psychology、information recommendation and information management field for further research;In practical aspect, our research finding can assist webstore company in implementing recommendation service。
    關鍵字(中)
  • 使用者滿意度
  • 推薦方式
  • 認知風格
  • 關鍵字(英)
  • User Satisfaction
  • Recommendation Interface
  • Cognitive Style
  • 論文目次 目 錄
    第一章 緒論1
    第一節 研究背景與動機1
    第二節 研究目的4
    第三節 研究流程4
    第四節 論文結構6
    第二章 文獻探討7
    第一節 推薦系統7
    第二節 使用者介面18
    第三節 認知風格20
    第四節 使用者滿意度26
    第三章 研究設計32
    第一節 研究模式32
    第二節 研究假說33
    第三節 變數衡量33
    第四節 研究設計35
    第五節 實驗前測39
    第四章 研究結果分析43
    第一節 資料分析方法43
    第二節 問卷信效度分析44
    第三節 受測者基本資料與認知風格分析46
    第四節 應變數敘述統計分析51
    第五節 研究假說驗證53
    第六節 研究結果彙整56
    第五章 結論57
    第一節 研究發現與討論57
    第二節 研究貢獻58
    第三節 研究限制58
    第四節 未來研究方向59
    參考文獻61
    附錄69
    附錄一 個人基本資料問卷 69
    附錄二 認知風格問卷 70
    附錄三 使用者滿意度問卷 71
    附錄四 正式實驗的系統使用流程 72
    參考文獻 參考文獻
    中文部分:
    [1]陳李綢,「認知發展與輔導」,心理出版社有限公司,台北市,1992。
    [2]黃俊英,企業研究方法,東華書局,台北,1994。
    [3]賴宏仁,「電子報個人化新聞推薦方法之研究」,國立中山大學資訊管理研究所博士論文,1999。
    [4]許麗玲,「認知風格在虛擬實境遠距學習遷移之影響」,國立高雄師範大學工業科技教育研究所碩士論文,2000。
    [5]吳明隆,「SPSS統計應用實務」,松崗圖書公司,2000。
    [6]楊永芳,「語意擴充式文件推薦文法之研究」,國立中山大學資訊管理研究所碩士論文,2002。
    [7]董和昇,「網站使用者資訊獲取策略之研究」,國立中山大學資訊管理研究所博士論文,2002。
    [8]祝道松、林家五,企業研究方法/Uma Sekaran原著,智勝文化,台北,2003。
    英文部分:
    [1]Albert, H.H.,”Effects of multimedia on document browsing and navigation: an exploratory empirical investigation,” Information and Management, Vol. 41, 2003, pp.189-198.
    [2]Alloway, R.M. and J.A. Quillard,”Top Priorities for Information Systems Functions,” CISR Working Paper, Sloan School of Management, MIT, Cambridge, MA, 1981.
    [3]Bailey, J.E. and S. W. Pearson, “Development of a Tool for Measuring and Analyzing Computer User Satisfaction,” Management Science, Vol. 29, No. 5, 1983, pp530-545.
    [4]Baroudi, J.J., and Orlikowski, W.J., “A Short-Form Measure of User Information Satisfaction: A Psychometric Evaluation and Note on Use,” Journal of Management Information Systems, Vol.4, No. 4, 1988, pp.44-59.
    [5]Balabanovic, M., and Shoham, Y., “Fab: Content-Based, Collaborative  Recommendation,” Communications of the ACM, Vol.40, No.3, Mar-1997, pp.66-72.
    [6]Benbasat, I. and Dexter, A.S., “An Investigation of Effectiveness of Color and Graphical Information Presentation under Varying Time Constraints,” MIS Quarterly, Vol.10, No.1, 1986, pp.59-81.
    [7]Benbasat, I. and Taylor, R.N., “Behavioral Aspects of Information Processing for the Design of Management Information Systems,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 4, No.4, 1982, pp.439-450.
    [8]Benbasat, I. and Tayor, R. N., “The Impact of Cognitive Styles on Information System Design,” MIS Quarterly, Vol. 2, No. 2, 1978, pp.43-54.
    [9]Berrais, A., “Knowledge-based expert systems: user interface implications,” Advances in Engineering Software, Vol. 28, 1997, pp.31-41.
    [10]Brightman, H.J., Elrod, R., and Ramakrishna, H., “Matching problem diagnostic tools to managers’ decision style: A contingency approach.,” OMEGA, 1988, pp.1-9
    [11]Chen, L.D. et al.,”Measuring User Satisfaction with Data Warehouses: An Exploratory Study,” Information and Management, Vol.37, No.3, pp 103-110.
    [12]Conrath, D. and O. Mignenm, “What is Being Done to Measure User Satisfaction with EDP/MIS,” Information and Management, Vol. 19, No. 1, 1990, pp7-19.
    [13]DeLone, W. H. and E. R. McLean, “Information Systems: The Quest for the Dependent Variable,” Information Systems Research, Vol. 3, No. 1, 1992, pp.60-95.
    [14]Devellis, R.F., Scale Development Theory and Application, London: SAGE, 1991.
    [15]Doll, W.J. and Torkzadeh, G., “The Measurement of End-User Computing Satisfaction,” MIS Quarterly, Vol. 12, No. 2, June 1988, pp.259-274.
    [16]Doll, W.J., Xia, W. and Torkzadeh, G., “A Confirmatory Factor Analysis of the End-User Computing Satisfaction,” MIS Quarterly, Vol. 18, No.4, December 1994, pp.453-461.
    [17]Doll, W.J., Reghunathan, T.S., Lim, Jeen-Su, Gupta, Yash P., “A Confirmatory Factor Analysis of the User Information Satisfaction Instrument,” Information Systems Research, Vol. 6, No. 2, June 1995, pp177-189.
    [18]Epstein, S., Pacini, R., and Denes-Raj, V., “Individual Differences in Intuitive-Experiential and Analytical-Rational Thinking Styles,” Journal of Personality and Social Psychology, Vol. 71, No. 2, 1996, pp.390-405.
    [19]Etezadi-Amoli, J. and A. F. Farhoomand, “A Structural Mode of End User Computing Satisfaction and User Performance,” Information and Management, Vol. 30, No. 2, June 1996, pp.65-73.
    [20]Fuchs-Frohnhofen, P., Hartmann, E. A., Brandt, D., and Weydandt, D., “Designing Human-Machine Interface to match the user’s mental model,” Control Eng. Practice, 4, 1996, pp.13-18.
    [21]Gay, L.R., Educational Research Competencies for Analysis and Applications, New York: Macmillan. 1992.
    [22]Goldberg, D., Nichols, D., Oki, B.M., and Terry, D.,” Using collaborative filtering to weave an information tapestry." Communication of the ACM, Vol35, Dec-92, pp.61-70.
    [23]Good, N., Schafer, J., Konstan, J., Borchers, A., Sarwar, B., Herlocker, J. and Riedl, J.,” Combining Collaborative Filtering with Personal Agents for Better Recommendations,” Proceedings of the 1999 Conference of American Association of Artificial Intelligence(AAAI-99),1999,pp.439-446.
    [24]Guimaraes, T. and Y.P. Gupta, “Measuring Top Management Satisfaction with the MIS Department,” OMEGA, Vol.16, No. 1, 1988, pp 17-24.
    [25]Hammond, K.R., Hamn, R.M., Grassia, J., and Pearson, T., “Direct Comparison of the Efficacy of Intuitive and Analytical Cognition in Expert Judgement,” IEEE Transactions on System, Man, and Cybernetics, Vol. SMC-17, No.5, September 1987, pp.753-770.
    [26]Herlocker, L.J., Konstan, J.A., and Riedl, J.,” Explaining Collaborative Filtering Recommendations,” Proceeding of the ACM 2000 Conference on Computer Supported Cooperative Work, 2000, pp.241-250.
    [27]Hunt, R.G., Krzystofiak, F.J., Meindl, J.R., and Yousry, A.M., “Cognitive style and decision making,” Organizational Behavior and Human Decision Processes, 1989, pp.436-453.
    [28]Ives, B., M. H. Olson, and J.J. Broudi,”The Measurement of User Information Satisfaction”, Communication of the ACM, Vol. 26, No. 10, 1983,pp785-793.
    [29]Kautz, E., Blumler, J.G., and Gurevitch, M., “Utilization of Mass Communication by Individual,” in Blumler, J.G. and Katz, E. (Eds.), The Use of Communications, Sage, CA, Beverly Hills, 1974, pp. 19-32.
    [30]Kautz, H., Selman, B., and Shah, M., “Referral Web: Combining Social Networks and Collaborative Filtering,” Communications of the ACM, Vol.40, No.3, Mar-97, pp.63-65.
    [31]Keen, P.W.G.,” The Implication of Cognitive Style for Individual Decision Making,” D.B.A. Thesis, Harvard University, 1973
    [32]Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., and Riedl, J., “GroupLens: Applying Collaborative Filtering to Usenet News,” Communications of the ACM, Vol.40, No.3, Mar-97, pp.77-87.
    [33]Paul, J.H.H., Pai, C.M., and Patrick Y.K.C., “Evaluation of user interface designs for information retrieval systems: a computer-based experiment,” Decision Support Systems, Vol. 27, No. 1, June 1999, pp.125-143.
    [34]Pazzani, M.J., “ A Framework for Collaborative, Content-Based and Demographic Filtering,” Artificial Intelligence Review, http://www.ics.uci.edu/~pazzani/Publications/publications.html.
    [35]Leng, K. “Newsweeder:Learning to Filter Netnews,” Proceeding of the 12th International Conference on Machine Learning, Denver, May 1995.
    [36]Liang, T.P. and Doong, H.S., “Effect of Bargaining in Electronic Commerce,” International Journal of Electronic Commerce, Vol.4, No. 3, 2000, pp.23-48.
    [37]McHaney, R. and Cronan, T.P.,”Computer Simulation Success: On the Use of the End-User Computing Satisfaction Instrument: A Comment,” Decision Sciences, spring 1998, pp.525-536.
    [38]McHaney, R., Hightower, R., and White, D. “EUCS test-retest reliability in representational model decision support systems,” Information and Management (36), 1999, pp.109-119.
    [39]McHaney, R. and Cronan, T.P., “toward an empirical understanding of computer simulation implementation success,” Information and Management, 2000, pp.131-151.
    [40]McTear, M. F., “Intelligent interface technology: from theory to reality?,” Interacting with Computers, Vol. 12, No. 4, 2000, pp323-336.
    [41]Messick, S., “Individuality in Learning,” San Francisco: Jossey-Bass, 1976.
    [42]Miller, J. and B. A. Doyle, “Measuring the Effectiveness of Computer-Based Information Systems in the Financial Services Sector,” MIS Quarterly, Vol. 11, No. 2, March 1987, pp. 106-124.
    [43]Myers, I.B. and McCaulley, M.H., “Manual: A guide to the development and use of the Myers-Briggs type indicator,” Consulting Psychologists Press, 1985.
    [44]Nunnally, J.C., Psychometric Theory (2nd Ed.) New York:McGraw Hill.,1978.
    [45]Rao, R., Jacobs, S., and Frank, L., “Hemispheric Specialization, Cognitive Differences and Their Implications for the Design of Decision Support Systems,” MIS Quarterly, Vol. 16, No.2, June 1992, pp.145-151.
    [46]Resnick, P., and R. Varian, Hal, “Recommender systems,” Communication of ACM, Vol.40, Issue 3,1997, pp.56-58.
    [47]Robert, J.S., Cognitive Psychology (3nd Ed.) Wadsworth Publishing., 2002.
    [48]Robey, D., and Taggart, W., “Human Information Processing in Information and Decision Support System,” MIS Quarterly, Vol. 6, No.2, June 1982, pp.61-73.
    [49]Rook, F. W., and Donnell, M. L., “Human Cognition and expert system interface: mental model and interface explanations. IEEE Transaction on System, Man, and Cybernetics, Vol. 23, No.6, 1993, pp.1649-1661.
    [50]Rucker, J., and Polanco, M.J.,”Siteseer: Personalized Navigation for the Web,” Communications of the ACM, Vol.40, No.3, Mar-97, pp.73-76.
    [51]Sakagami, H., and Kamba, T.,”Learning Personal Preferences on Online Newspaper Article from User Behaviors,” Computer Networks and ISDN Systems, Vol. 29, 1997, pp. 1447-1455.
    [52]Sarwar, B., Karypis,G.,Konstan,J.,Riedl,J.,”Analysis of Recommendation Algorithms for E-Commerce,” Proceedings of the Second ACM E-Commerce Conference,2000.
    [53]Schafer, J.B., Konstan, J.A., and Riedl, J., “Recommender Systems in E-Comemerce,” ACM Conference on Electronic Commerce, 1999, pp.158-166.
    [54]Shardanand, U. and Maes,P., ”Social Information Filtering: Algorithms for Automating Word of Mouth,” Proceedings of ACM CHI’95 Conference on Human Factors in Computing System, 1995, pp.210-217.
    [55]Sifaqui, C., “Structuring user interface with a meta-model of mental models,” Computers & Graphics, Vol. 23, 1999, pp.323-330.
    [56]Spence, J.W. and Tsai, R.J., “Research on Human Cognition and The Design of Information Systems,” Information and Management, Vol.32, 1997, pp.65-73.
    [57]Terveen, L., Hill, W., Amento, B., McDonald, D., and Creter, J.,”PHOAKS: A System for Sharing Recommendations,” Communications of the ACM, Vol.40, No.3, Mar-97, pp.59-62.
    [58]Van der Veer, G. C., Tauber, M.J., Waern, Y., and Van Muylwijk, B., “On the Interaction between System and User Characteristics,” Behaviour and Information Technology, Vol. 4, No. 4,1985, pp.289-308.
    [59]Weng, S.S and Liu, M.J., ”Feature-Based Recommendations for One to One Marketing,” Expert Systems with Applications, Vol. 26, No.4,May-2004, pp.493-508.
    [60]Witkin, H.A. The Role of Cognitive Style in Academic Performance and in Teacher-Student Relations, 1972.
    [61]Witkin, H.A., Oltman, P.K., Ruskin, E., and Karp, S.A., the Embedded Figures Test, Palo Alto, CA: Consulting Psychologist Press, 1971.
    [62]Wu, K.L., Aggarwal, C.C., and Yu, P.S., “Personalization with Dynamic Profiler,” California 3rd International Workshop on Advanced Issues of E-Commerce and Web-Based Information Systems (WECWIS), 2001, pp.12-20.
    [63]Xiao, L. and Dasgupta, S., ”Measurement of User Satisfaction with Web-Based Information Systems: An Empirical Study,” Eighth Americas Conference on Information Systems, 2002, pp.1149-1155.
    [64]Yuan, S.T. and Tsao, Y.W., ”A Recommendation Mechanism for Contextualized Mobile Advertisement,” Expert Systems with Applications, Vol. 24, No. 4, May-2003, pp.399-414.
    [65]Zmud, R. W., “Individual Differences and MIS Success: A Review of the Empirical Literature,” Management Science, Vol. 25, No. 10, 1979, pp.966-979.
    [66]Zviran, M., Erlich, Z., “Measuring IS User Satisfaction Review and Implications,” Communications of the Association for information Systems, Vol. 12, 2003, pp.81-103.
    口試委員
  • 賴香菊 - 召集委員
  • 朱四明 - 委員
  • 江俊毅 - 委員
  • 梁定澎 - 指導教授
  • 口試日期 2004-07-19 繳交日期 2004-07-26

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫