Responsive image
博碩士論文 etd-0723115-214902 詳細資訊
Title page for etd-0723115-214902
論文名稱
Title
具高升降壓比之新型雙向全波整流電路
A Novel Bi-Directional Full-Wave Rectifier with Higher Step-Up and Step-Down Voltage Ratio
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-08-11
繳交日期
Date of Submission
2015-08-23
關鍵字
Keywords
電壓應力、分時多工、再生能源發電系統、四倍壓整流電路、高升降壓比
Time Division Multiplex, Four Times Voltage Multiplier Rectifier, Renewable Energy Generation System, Higher Step-Up and Step-Down Voltage Ratio, Voltage Stress
統計
Statistics
本論文已被瀏覽 5753 次,被下載 41
The thesis/dissertation has been browsed 5753 times, has been downloaded 41 times.
中文摘要
本論文提出一具高升降壓比之新型雙向全波整流電路,可用於再生能源發電系統中需高升降壓比之電力轉換器。本文電路低壓側為全橋電路,經由變壓器連接高壓側,高壓側由兩個全波倍壓電路組成四倍壓整流電路。升壓模式時,功率開關之驅動利用相移控制降低功率開關承受應力,增加滿載時轉換效率,另一方面利用分時多工的控制策略,在不同時間點透過二極體對不同的電容充電,使輸出電容接近均壓,最後再將四組輸出電容疊加達到多倍壓的輸出。降壓模式亦利用分時多工的策略,四組電容藉由開關的切換產生雙極性電壓源,利用變壓器將能量傳遞到低壓側,使電容在不同時間點對負載進行放電,電容電壓亦可接近均壓。本文實際製作一具高升降壓比之雙向全橋全波整流電路,其升壓模式規格為輸入電壓24V、輸出電壓200V、額定功率100W,降壓模式規格為輸入電壓200V、輸出電壓24V、額定功率100W。實驗結果驗證所提出電路架構之雙向控制可行性,並在升降壓模式皆達到86%以上的轉換效率,此外由模擬與實測結果可看出本文所提出電路其二極體所承受電壓應力確實小於傳統倍壓整流電路,而輸出電容所承受電壓應力小於半波倍壓電路。因此本文提出之雙向電路可適用於需高升降壓比之再生能源發電系統轉換器。
Abstract
This thesis proposes a novel bi-directional full-wave rectifier with higher step-up and step-down voltage ratio which can be used in renewable energy generation systems. The low-voltage side of this circuit is full-bridge topology, combined with transformer, and the high-voltage side is composed of two full-wave rectifier circuits to construct a four times voltage multiplier rectifier. In the boost mode, the power switches of low-voltage side are driving by phase-shift control to reduce the stresses on the power switches. Meanwhile, the Time Division Multiplex (TDM) control strategy is used to transfer energy from the output rectifier diodes to the output capacitors at different time intervals. TDM control strategy can reduce voltage stress of the output capacitors and rectifier diodes. The voltages of output capacitors can almost achieve equalizing voltage. The four times output voltage can then be realized due to the superposition of the output capacitor voltages. In buck mode, the different capacitors based on TDM control strategy can release energy to load in different time intervals. All capacitor voltages in the buck mode are also almost same. A novel bi-directional full-bridge full-wave rectifier with higher step-up and step-down voltage ratio is implemented in this thesis. The specifications for the boost and buck modes are 24V DC input, 200V DC output, and rated power 100W and 200V DC input, 24V DC output, and rated power 100W, respectively. Experimental results show that the bi-directional functionality of the proposed circuit can be achieved. Besides, the conversion efficiency for both boost and buck modes is above 86%. Experimental and simulated results also indicate that the voltage stresses of output capacitors and rectifier diodes in the proposed four times voltage multiplier rectifier is less than the conventional half-wave or full-wave rectifiers. Therefore, the proposed bi-directional circuit has great potential to be used in the converters of renewable energy generation systems requiring higher step-up and step-down voltage ratio.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 xii
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 2
1-3 論文大綱 4
第二章 相關電路架構介紹 6
2-1雙向隔離與非隔離轉換器之介紹 6
2-1-1雙向非隔離型轉換器 6
2-1-2雙向隔離型轉換器 9
2-2相移全橋轉換器 12
2-2-1硬性切換及柔性切換 12
2-2-2諧振轉換器 15
2-2-3傳統相移全橋轉換器 16
2-3倍壓轉換器介紹 18
2-3-1半波與全波倍壓整流電路 18
2-3-2四倍壓整流電路 21
第三章 具高升降壓比之雙向全波整流電路 23
3-1電路架構分析 23
3-2升壓模式操作原理分析 32
3-3降壓模式操作原理分析 38
第四章 電路設計與控制 45
4-1電路元件與參數設計 45
4-1-1變壓器設計實例 45
4-1-2輸出整流二極體選擇 50
4-1-3輸出電容元件選擇 51
4-1-4功率開關元件選擇 51
4-1-5諧振電感設計實例 51
4-2周邊電路設計 52
4-3控制晶片設計 55
4-3-1TMS320F28335數位訊號控制器與CCStudio簡介 57
4-3-2程式設計流程介紹 60
第五章 電路模擬與實驗結果 64
5-1雙向全波整流電路模擬 64
5-1-1升壓模式 65
5-1-2降壓模式 75
5-2雙向全波整流電路實測 78
5-2-1升壓模式 80
5-2-2降壓模式 89
第六章 結論與未來展望 94
6-1結論 94
6-2未來展望 95
參考文獻 96
參考文獻 References
[1] J. W. Baek, M. H. Ryoo, T. J. Kim, D. W. Yoo, and J. S. Kim, “High boost converter using voltage multiplier,” in Proc. IEEE IECON, 2005, pp. 567–572
[2] Rabinowitz, M., “Power systems of the future. I,” IEEE Power Engineering Review, Vol. 20 (1), pp. 5-16, Aug. 2000.
[3] 許志義, “論分散型供電系統的發展趨勢及其對台灣的涵義,” 經濟情勢暨評論季刊, 2卷1期, 頁135-140, 台北, 1996
[4] S. Jain, V. Agarwal, “A single-stage grid connected inverter topology for solar PV systems with maximum power point tracking,” IEEE Trans. Power Electron., vol. 22, no.5, pp. 1928-1940., Sept. 2007
[5] B. Koushki, A. Safaee, P. Jain, and A. Bakhshai, “Review and Comparison of Bi-Directional AC-DC converters with V2G capability for On-Board EV and HEV,” in Proc. IEEE ITEC, pp. 1-6., June 2014
[6] Rosario Carbone, “Energy Storage in the Emerging Era of Smart Grids,” Publisher InTech, pp.161-178., Sept. 2011
[7] D. C. Erb, O. C. Onar, A. Khaligh, “Bi-directional charging topologies for plug-in hybrid electric vehicles, ” in Proc. IEEE APEC, 2010 Twenty-Fifth Annual IEEE, pp. 2066-2072., Feb. 2010
[8] Jiuchun Jiang, Yan Bao and Le Yi Wang “Topology of a bidirectional converter for Energy Interaction between Electric Vehicles and the Grid,” Energies 2014,pp. 4858-4894, July 2014
[9] Y. Du, X. Zhou, S. Bai, S. Lukic, and A. Huang, “Review of non-isolated bi-directional DC-DC converters for plug-in hybrid electric vehicle charge station application at municipal parking decks,” in Proc. IEEE APEC Expo., Palm Springs, CA, USA, pp. 1145-1151., Feb. 2010
[10] S. Inoue and H. Akagi, “A bidirectional dc–dc converter for an energy storage system with galvanic isolation,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2299-2306., Nov. 2007
[11] K. I. Hwu and Y. T. Yau, “An Interleaved AC-DC converter based on current Tracking,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1456-1463., May 2009
[12] F. Caricchi, F. Crescimbini, G. Noia, and D. Pirolo, “Experimental study of a bidirectional dc-dc converter for the dc link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles ,” in Proc. IEEE APEC, Orlando, FL, pp. 381-386., Feb. 1994
[13] D.P. Urciuoli and C.W. Tipton, “Development of a 90 kW bi-directional dc–dc converter for power dense applications,” in Proc. IEEE APEC, Dallas, TX, pp. 1375-1378., Mar. 2006
[14] S. Waffler and J. W. Kolar, “A novel low-loss modulation strategy for high-power bi-directional buck+boost converters,” in Proc. IEEE ICPE, pp. 889-894., Oct. 2007
[15] K. Yamamoto, E. Hiraki, T. Tanaka, M. Nakaoka, and T. Mishima, “Bidirectional dc-dc converter with full-bridge/push-pull circuit for automobile electric power systems,” in Proc. IEEE PESC, Jeju, South Korea, pp. 1-5, June 2006
[16] F.A. Himmelstoss, “Analysis and comparison of half-bridge bidirectional dc-dc converters,” in Proc. IEEE PESC, Taipei, Taiwan, pp. 922-928., June 1994
[17] R. Li, A. Pottharst, N. Frohleke, and J. Bocker, “Analysis and design of improved isolated full-bridge bidirectional dc-dc converter,” in Proc. IEEE PESC, Aachen,Germany, vol. 1, pp. 521-526., June 2004
[18] T. Mishima and E. Hiraki, “ZVS-SR Bidirectional DC-DC Converter For Supercapacitor-Applied Automotive Electric Energy Storage Systems,” in 2005 IEEE Conference Vehicle Power and Propulsion, 2005, pp. 582-588., 2005
[19] Y. Du, S. Lukic, B. Jacobson, and A. Huang, “Review of high power isolated bi-directional DC-DC converters for PHEV/EV DC charging infrastructure,” in Proc. IEEE Energy Conversion Congr. Expo., pp. 553-560., Sep. 2011
[20] M. Santhi, R. Rajaram, and I.G.C. Raj, “A ZVCS lc-resonant push-pull power converter circuit for battery-fuel cell hybrid systems,” in Conf. Rec. of IEEE Conference on Electric and Hybrid Vehicles, Pune, India, pp. 1-6., Dec. 2006
[21] R.W. De Doncker, D.M. Divan, and M.H. Kheraluwala, “A three-phase softswitched high power density dc-to-dc converter for high power applications,” IEEE Tran. Ind. Appl., vol. 27, No. 1, pp.63-73. , Jan. 1991
[22] H. Tao, J. L. Duarte, and M. A. M. Hendrix, “High-power three-port three-phase bidirectional dc-dc converter,” in Proc. IEEE IAS, Manchester, UK, pp. 2022-2029., Sept. 2007
[23] H. Li, D. Liu, F.Z. Peng, and G.J. Su, “Small signal analysis of a dual half bridge isolated ZVS bi-directional dc-dc converter for electrical vehicle applications,” in Proc. IEEE PESC, Recife, Brazil, pp. 2777-2782. , June 2005
[24] K. Wang, F.C. Lee, and J.S. Lai, “Operation principles of bi-directional full-bridge dc/dc converter with unified soft-switching scheme and soft-starting capability,” in Proc. IEEE APEC, New Orleans, LA, vol. 1, pp. 111-118. , Feb. 2000
[25] T. Mishima, E. Hiraki, T. Tanaka, and M. Nakaoka, “A new soft-switched bidirectional dc-dc converter topology for automotive high voltage dc Bus architectures,” in Conf. Rec. of IEEE VPPC, Windsor, UK, pp. 1-6. ,Sept. 2006
[26] G. Chen, D. Xu, Y. Wang, Y.S. Lee, “A new family of soft-switching phase-shift bidirectional dc-dc converters,” in Proc. IEEE PESC, Vancouver, British Columbia, Canada, vol. 2, pp. 859-865. , June 2001
[27] 廖長鴻,“高功率雙向全橋直流/直流轉換器的研製,”國立台北科技大學,中華民國99年7月
[28] 劉翼德,“高電壓輸出之零電壓切換相移式全橋升壓型轉換器的分析及研製,”國立台灣科技大學,中華民國93年7月
[29] A. S. Babokany, M. Jabbari, G. Shahgholian, and M. Mahdavian, “A review of bidirectional dual active bridge converter,” in Proc. Electr. Eng./Electron., Comput., Telecommun. Inf. Technol., 9th Int. Conf., pp. 1-4. , 2012
[30] EPARC,“電力電子學綜論(第二版),”全華圖書股份有限公司,中華民國100年六月
[31] H. Levy, I. Zafrany, G. Ivensky, and S. Ben-Yaakov, “Analysis and evaluation of a lossless turn-on snubber,” in Proc. IEEE APEC, pp. 757-763. , 1996
[32] Y. Jang and M. M. Jovanović, “A new, soft-switched, high-power-factor boost converter with IGBTs,” IEEE Trans. on Power Electronics, vol. 17, Nov. 4 pp. 397-401, July 2002.
[33] A. Jangwanitlert, J. Songboonkaew, “A comparison of zero-voltage and zero-current switching phase-shifted PWM converter,” Int. Conf on PEDS, vol. 1, pp. 95-100., Jan. 2006
[34] F. Liu, J. Yan, and X. Ruan, “Zero-voltage and zero-current-switching PWM combined three-level dc/dc converter,” IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 1644-1654, May 2010
[35] C. Pan, C. Chuang and C. Chu, “A Transformer-less Interleaved Four-Phase Current-Fed Converter with New Voltage Multiplier Topology,” Industrial Electronics, IEEE Transactions, pp. 1, 2014
[36] E. S. Kim, K. Y. Joe, M. H. Kye, Y. H.Kim, “An improved soft switching PWM FB dc/dc converter for reducing conduction loss,” IEEE PESC Rec., vol.1, pp. 651-656, Jun 1996.
[37] 符曉,朱洪順,“TMS320F2833X DSP應用開發與實踐,”北京航空航天大學出版社
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code