論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2026-08-21
校外 Off-campus:開放下載的時間 available 2026-08-21
論文名稱 Title |
高溫固化聚矽氮烷液態高分子陶瓷前驅物表面薄膜 Ti-6AL-4V機械性質之研究 Mechanical Properties of High-Temperature Curing liquidic polysilazane preceramic precursor Surface Film on Ti-6AL-4V |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
110 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2024-07-09 |
繳交日期 Date of Submission |
2024-08-21 |
關鍵字 Keywords |
聚矽氮烷液態高分子陶瓷前驅物、矽基高分子、Ti-6Al-4V、電化學、奈米壓痕、微米壓痕 Polysilazane preceramic precursor, Silicon-based polymeric, Ti-6Al-4V, Electrochemical, Nanoindenter, microindenter |
||
統計 Statistics |
本論文已被瀏覽 63 次,被下載 0 次 The thesis/dissertation has been browsed 63 times, has been downloaded 0 times. |
中文摘要 |
本實驗的研究為將聚矽氮烷液態高分子陶瓷前驅物鍍膜於Ti-6Al-4V表面。鍍膜材料採用「聚矽氮烷液態高分子陶瓷前驅物(Polysilazane preceramic precursor)」,因其為液態相的陶瓷高分子,因此相比於傳統的陶瓷而言,其具有卓越的設計自由性,能夠靈活的適應各種複雜形狀的需求。液態相的聚矽氮烷液態高分子陶瓷前驅物在惰性氣體環境下進行熱交聯,會轉變為熱固性聚合物,接著再將燒結溫度提高則會進行熱裂解,其會轉變為聚合物衍生性陶瓷(Polymer derived ceramic, PDC)。PDC具備著許多的特殊能力,如機械強度、抗腐蝕性、抗氧化性及耐磨耗性等,因此在許多行業會對此材料進行應用。基材則選用生醫材料Ti6Al4V,其具有高強度、低密度、耐腐蝕性及生物相容性等特點,尤其在人工關節方面應用居多,因此選此材料作為本實驗之基材。 首先對鈦棒進行線切割處理,切成固定大小之圓片,後續接著拋光、清洗並乾燥。完成前置作業後再進行酸鹼處理,使其表面產生奈米孔洞,後續再使用浸塗法將陶瓷前驅物沉積於圓片上,並放置於高溫爐內進行熱交聯及熱裂解,最後會產生出微米等級的矽基高分子鍍膜。接著將鍍膜完成的試片使用電化學分析儀(Electrochemical analyzer)進行動態電位極化法量測其抗腐蝕能力,再透過奈米壓痕量測系統對鍍膜進行硬度及楊氏係數之量測分析,以了解其機械性質,並透過微米壓痕對硬度做二次確認,最後由場發射型掃描式電子顯微鏡(Field-Emission Scanning Electron Microscope, FE-SEM)、高階三束型聚焦離子束顯微鏡(Advanced Triple Beam Focused Ion Beam Microscope, FIB)、能量散射X射線譜(Energy-dispersive X-ray spectroscopy, EDS)和X射線繞射儀(X-ray Diffractometer, XRD)觀察薄膜表面、截面微結構、元素成份分析及材料分析。 實驗結果顯示,矽基高分子鍍膜厚度約落在2~6μm,且在經過900℃燒結後的鈦合金表面發現TiO2-Rutile;在電化學量測中,Ti64-700℃10%具有最低的腐蝕電流密度及最低的腐蝕速率;奈米壓痕量測系統量顯示,Ti64-900℃30%具有最高之硬度及楊氏係數,其抗磨耗及抗塑性變形能力也近乎最優異;最後透過微米壓痕數據驗證及證明Ti64-900℃30%具有最高之硬度。 |
Abstract |
This study focuses on coating the surface of Ti-6Al-4V with a polysilazane liquid polymer ceramic precursor. The coating material used is a "Polysilazane preceramic precursor." As a liquid-phase ceramic polymer, it offers exceptional design flexibility compared to traditional ceramics, allowing it to adapt to various complex shapes. The liquid-phase polysilazane ceramic precursor undergoes thermal crosslinking in an inert gas environment, transforming into a thermosetting polymer. When the sintering temperature is further increased, thermal pyrolysis occurs, converting it into a polymer-derived ceramic (PDC). PDC exhibits several unique properties, such as mechanical strength, corrosion resistance, oxidation resistance, and wear resistance, making it applicable in various industries. The substrate chosen for this experiment is the biomedical material Ti-6Al-4V, known for its high strength, low density, corrosion resistance, and biocompatibility. These characteristics make it particularly suitable for use in artificial joints, which is why it was selected as the substrate for this study. First, the titanium rods are processed using wire cutting to obtain circular discs of fixed size, followed by polishing, cleaning, and drying. After the preparation work is completed, the discs undergo acid-base treatment to create nanometer-scale pores on the surface. The ceramic precursor is then deposited onto the discs using a dip-coating method and placed in a high-temperature furnace for thermal crosslinking and pyrolysis, resulting in a silicon-based polymer coating at the micron scale. Next, the corrosion resistance of the coated samples is measured using dynamic potential polarization with an electrochemical analyzer. The hardness and Young's modulus of the coating are analyzed using a nanoindentation measurement system to assess its mechanical properties. A microindentation test is also performed to confirm the hardness. Finally, the surface and cross-sectional microstructures, elemental composition, and material analysis of the thin film are observed using a Field-Emission Scanning Electron Microscope (FE-SEM), an Advanced Triple Beam Focused Ion Beam Microscope (FIB), Energy-dispersive X-ray spectroscopy (EDS), and an X-ray Diffractometer (XRD). The experimental results indicate that the thickness of the silicon-based polymer coating ranges from approximately 2 to 6 μm. After sintering at 900°C, TiO2-Rutile was observed on the surface of the titanium alloy. In the electrochemical measurements, the sample Ti64-700℃10% exhibited the lowest corrosion current density and the lowest corrosion rate. Nanoindentation measurements revealed that Ti64-900℃30% had the highest hardness and Young's modulus, indicating superior wear resistance and resistance to plastic deformation. Finally, microindentation data confirmed and verified that Ti64-900℃30% possessed the highest hardness. |
目次 Table of Contents |
目錄 論文審定書 i 摘要 ii ABSTRACT iv 目錄 vi 圖次 ix 表次 xii 1 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 2 2 第二章 基礎理論與文獻回顧 3 2.1 聚合物衍生性陶瓷(Polymer derived ceramic, PDC) 3 2.1.1 聚合物衍生性陶瓷的合成 5 2.1.2 聚合物衍生性陶瓷的轉化 8 2.1.3 聚合物衍生性陶瓷的沉積方式 11 2.1.4 聚矽氮烷(Polysilazane, PSZ) 14 2.1.5 聚合物衍生性陶瓷的應用 16 2.2 微動腐蝕(fretting corrosion) 18 2.3 金屬表面處理(Metal Surface Treatment) 20 3 第三章 實驗方法與設備 22 3.1 實驗用品 22 3.2 實驗設備 24 3.3 實驗流程 26 3.3.1 試片準備 27 3.3.2 試片製程與陶瓷前驅物調配說明 28 3.3.3 聚矽氮烷液態高分子前驅物塗佈於鈦合金 28 3.3.4 熱交聯及熱裂解 29 3.4 分析設備 30 3.4.1 場發射型掃描式電子顯微鏡(Field-Emission Scanning Electron Microscope, FE-SEM) 30 3.4.2 電化學分析 33 3.4.3 維克式硬度計(Vickers Hardness Tester) 37 3.4.4 高階三束型聚焦離子束顯微鏡(Advanced Triple Beam Focused Ion Beam Microscope, FIB) 39 3.4.5 X射線繞射儀(X-ray Diffractometer, XRD) 41 3.4.6 奈米壓痕量測系統(Nano-Indenter) 43 4 第四章 結果與討論 46 4.1 矽基高分子鍍膜之表面形貌 46 4.2 表面薄膜分析 47 4.2.1 FESEM與FIB表面薄膜分析 47 4.2.2 EDS元素分析 50 4.2.3 XRD成分分析 53 4.3 電化學性質量測 56 4.3.1 動態電位極化法 56 4.4 機械性質量測 69 4.4.1 奈米壓痕測試 69 4.4.2 微米壓痕測試 82 5 第五章 結論與未來展望 86 5.1 結論 86 5.2 未來展望 88 參考文獻 89 |
參考文獻 References |
[1] 國發會人力發展處, "<聯合國世界人口高齡化趨勢分析.pdf>," 國家發展委員會, 2014. [2] GENEONLINE. "台灣退化性關節炎幹細胞治療概況." https://geneonline.news/stem-cell-treat-osteoarthritis/ (accessed. [3] 臺北市立聯合醫院. "陶瓷人工髖關節." https://tpech.gov.taipei/News_Content.aspx?n=45D4E7EA48ED5FF5&s=A7EA54E0734B1B06 (accessed. [4] A. Martelli, P. Erani, N. Pazzagli, V. Cannillo, and M. Baleani, "Surface Analysis of Ti-Alloy Micro-Grooved 12/14 Tapers Assembled to Non-Sleeved and Sleeved Ceramic Heads: A Comparative Study of Retrieved Hip Prostheses," Materials (Basel), vol. 16, no. 3, Jan 25 2023, doi: 10.3390/ma16031067. [5] K. Osman, A. P. Panagiotidou, M. Khan, G. Blunn, and F. S. Haddad, "Corrosion at the head-neck interface of current designs of modular femoral components," The Bone & Joint Journal, vol. 98-B, no. 5, pp. 579-584, 2016, doi: 10.1302/0301-620x.98b5.35592. [6] K. L. Urish, N. J. Giori, J. E. Lemons, W. M. Mihalko, and N. Hallab, "Trunnion Corrosion in Total Hip Arthroplasty-Basic Concepts," Orthop Clin North Am, vol. 50, no. 3, pp. 281-288, Jul 2019, doi: 10.1016/j.ocl.2019.02.001. [7] R. P. Chaudhary, C. Parameswaran, M. Idrees, A. S. Rasaki, C. Liu, Z. Chen, and P. Colombo, "Additive manufacturing of polymer-derived ceramics: Materials, technologies, properties and potential applications," Progress in Materials Science, vol. 128, 2022, doi: 10.1016/j.pmatsci.2022.100969. [8] S. Fu, M. Zhu, and Y. Zhu, "Organosilicon polymer-derived ceramics: An overview," Journal of Advanced Ceramics, vol. 8, no. 4, pp. 457-478, 2019, doi: 10.1007/s40145-019-0335-3. [9] P. Colombo, G. Mera, R. Riedel, and G. D. Sorarù, "Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics," Journal of the American Ceramic Society, pp. no-no, 2010, doi: 10.1111/j.1551-2916.2010.03876.x. [10] Z. Ren, S. B. Mujib, and G. Singh, "High-Temperature Properties and Applications of Si-Based Polymer-Derived Ceramics: A Review," Materials (Basel), vol. 14, no. 3, Jan 29 2021, doi: 10.3390/ma14030614. [11] Q. Wen, Z. Yu, and R. Riedel, "The fate and role of in situ formed carbon in polymer-derived ceramics," Progress in Materials Science, vol. 109, 2020, doi: 10.1016/j.pmatsci.2019.100623. [12] G. W. W. V. M. Mansmann, "Production of shaped articles of silicon carbide and silicon nitride," 1973. [13] G. Barroso, Q. Li, R. K. Bordia, and G. Motz, "Polymeric and ceramic silicon-based coatings – a review," Journal of Materials Chemistry A, vol. 7, no. 5, pp. 1936-1963, 2019, doi: 10.1039/c8ta09054h. [14] R. Harshe, C. Balan, and R. Riedel, "Amorphous Si(Al)OC ceramic from polysiloxanes: bulk ceramic processing, crystallization behavior and applications," Journal of the European Ceramic Society, vol. 24, no. 12, pp. 3471-3482, 2004, doi: 10.1016/j.jeurceramsoc.2003.10.016. [15] N. Janakiraman and F. Aldinger, "Fabrication and characterization of fully dense Si–C–N ceramics from a poly(ureamethylvinyl)silazane precursor," Journal of the European Ceramic Society, vol. 29, no. 1, pp. 163-173, 2009, doi: 10.1016/j.jeurceramsoc.2008.05.028. [16] J. D. Torrey, R. K. Bordia, C. H. Henager, Y. Blum, Y. Shin, and W. D. Samuels, "Composite polymer derived ceramic system for oxidizing environments," Journal of Materials Science, vol. 41, no. 14, pp. 4617-4622, 2006, doi: 10.1007/s10853-006-0242-1. [17] P. Colombo, A. Martucci, O. Fogato, and P. Villoresi, "Silicon Carbide Films by Laser Pyrolysis of Polycarbosilane," Journal of the American Ceramic Society, vol. 84, no. 1, pp. 224-226, 2004, doi: 10.1111/j.1151-2916.2001.tb00636.x. [18] R. W. Theodor Schneller, Marija Kosec, David Payne, "Chemical Solution Deposition of Functional Oxide Thin Films," Ch. 10, p. 233, 2013. [19] Ossila. "Dip Coating: Practical Guide to Theory and Troubleshooting." https://www.ossila.com/pages/dip-coating#troubleshooting-defects (accessed. [20] A. Instruments. "Dip Coating Technology." https://www.apexicindia.com/technologies/dip-coating-technology (accessed. [21] D. Frederichi, M. Scaliante, and R. Bergamasco, "Structured photocatalytic systems: photocatalytic coatings on low-cost structures for treatment of water contaminated with micropollutants-a short review," Environ Sci Pollut Res Int, vol. 28, no. 19, pp. 23610-23633, May 2021, doi: 10.1007/s11356-020-10022-9. [22] KEYENCE. "旋轉塗佈機." https://www.keyence.com.tw/ss/products/measure/sealing/coater-type/spin.jsp (accessed. [23] KEYENCE. "半導體製造中的塗佈." https://www.keyence.com.tw/ss/products/measure/sealing/production/semiconductor.jsp (accessed. [24] 欣賢科技, "<欣賢科技-旋轉塗佈技術簡介.pdf>." [25] F. C. Krebs, "Fabrication and processing of polymer solar cells: A review of printing and coating techniques," Solar Energy Materials and Solar Cells, vol. 93, no. 4, pp. 394-412, 2009, doi: 10.1016/j.solmat.2008.10.004. [26] 百度百科. "靜電噴漆." https://baike.baidu.hk/item/%E9%9D%9C%E9%9B%BB%E5%99%B4%E6%BC%86/4750015 (accessed. [27] KEYENCE. "噴霧塗佈機." https://www.keyence.com.tw/ss/products/measure/sealing/coater-type/spray.jsp (accessed. [28] 百度百科. "空氣噴塗." https://baike.baidu.hk/item/%E7%A9%BA%E6%B0%A3%E5%99%B4%E5%A1%97/832520 (accessed. [29] COSMOSTAR. "無氣噴塗與高壓無氣噴塗原理及操作方法." https://airless-paint-sprayer.weebly.com/289612768322132226153328739640227392896127683221322261521407297022145025805203162604127861.html (accessed. [30] w_ou. "喷涂." https://baike.baidu.com/item/%E5%96%B7%E6%B6%82/10379761?_swebfr=220011 (accessed. [31] A. Qazzazie-Hauser, K. Honnef, and T. Hanemann, "Crosslinking Behavior of UV-Cured Polyorganosilazane as Polymer-Derived Ceramic Precursor in Ambient and Nitrogen Atmosphere," Polymers (Basel), vol. 13, no. 15, Jul 23 2021, doi: 10.3390/polym13152424. [32] G. Barroso, M. Döring, A. Horcher, A. Kienzle, and G. Motz, "Polysilazane‐Based Coatings with Anti‐Adherent Properties for Easy Release of Plastics and Composites from Metal Molds," Advanced Materials Interfaces, vol. 7, no. 10, 2020, doi: 10.1002/admi.201901952. [33] M. Fedel, F. J. Rodríguez Gómez, S. Rossi, and F. Deflorian, "Characterization of Polyorganosilazane-Derived Hybrid Coatings for the Corrosion Protection of Mild Steel in Chloride Solution," Coatings, vol. 9, no. 10, 2019, doi: 10.3390/coatings9100680. [34] Y. Zhan, R. Grottenmüller, W. Li, F. Javaid, and R. Riedel, "Evaluation of mechanical properties and hydrophobicity of room‐temperature, moisture‐curable polysilazane coatings," Journal of Applied Polymer Science, vol. 138, no. 21, 2021, doi: 10.1002/app.50469. [35] X. Zhang et al., "Ablation resistance of ZrC coating modified by polymer-derived SiHfOC ceramic microspheres at ultrahigh temperature," Journal of Materials Science & Technology, vol. 182, pp. 119-131, 2024, doi: 10.1016/j.jmst.2023.09.031. [36] H. Liu, N. Wu, X. Zhang, N. Xu, Y. Wang, and B. Wang, "High-strength electrospun ceramic ultrafine fibers based on in-situ polymer-derived technology," Journal of the European Ceramic Society, vol. 44, no. 2, pp. 776-783, 2024, doi: 10.1016/j.jeurceramsoc.2023.09.077. [37] J. Liu et al., "Novel lightweight and efficient electromagnetic waves absorbing performance of biomass porous carbon/polymer-derived composite ceramics," Ceramics International, vol. 49, no. 9, pp. 13742-13751, 2023, doi: 10.1016/j.ceramint.2022.12.252. [38] Y. Zhao, L. Guo, and Q. Ma, "Influence of Ni on the structural evolution of polymer-derived SiOC ceramics," Journal of Materials Research and Technology, vol. 20, pp. 4515-4524, 2022, doi: 10.1016/j.jmrt.2022.09.004. [39] E. W. Awin et al., "Low frequency dielectric behavior and AC conductivity of polymer derived SiC(O)/HfCxN1-x ceramic nanocomposites," Materials Chemistry and Physics, vol. 260, 2021, doi: 10.1016/j.matchemphys.2020.124122. [40] M. D. Nguyen et al., "Novel polymer-derived ceramic environmental barrier coating system for carbon steel in oxidizing environments," Journal of the European Ceramic Society, vol. 37, no. 5, pp. 2001-2010, 2017, doi: 10.1016/j.jeurceramsoc.2016.12.049. [41] J. B. Mistry, M. Chughtai, R. K. Elmallah, A. Diedrich, S. Le, M. Thomas, and M. A. Mont, "Trunnionosis in total hip arthroplasty: a review," J Orthop Traumatol, vol. 17, no. 1, pp. 1-6, Mar 2016, doi: 10.1007/s10195-016-0391-1. [42] M. T. Houdek, M. J. Taunton, C. C. Wyles, P. J. Jannetto, D. G. Lewallen, and D. J. Berry, "Synovial Fluid Metal Ion Levels are Superior to Blood Metal Ion Levels in Predicting an Adverse Local Tissue Reaction in Failed Total Hip Arthroplasty," J Arthroplasty, vol. 36, no. 9, pp. 3312-3317 e1, Sep 2021, doi: 10.1016/j.arth.2021.04.034. [43] B. Du et al., "Surface Treat Method to Improve the Adhesion between Stainless Steel and Resin: A Review," ACS Omega, vol. 8, no. 43, pp. 39984-40004, Oct 31 2023, doi: 10.1021/acsomega.3c05728. [44] Y. T. Yao, S. Liu, M. V. Swain, X. P. Zhang, K. Zhao, and Y. T. Jian, "Effects of acid-alkali treatment on bioactivity and osteoinduction of porous titanium: An in vitro study," Mater Sci Eng C Mater Biol Appl, vol. 94, pp. 200-210, Jan 1 2019, doi: 10.1016/j.msec.2018.08.056. [45] C.-F. H. C.-H. T. K.-L. O. C.-C. C. S.-Y. Lee, "Microstructure and Properties of a Nanostructural TiO2 Layer on the plasma-treated Titanium Implant," Chinese Journal of Dentistry, 2005, doi: 10.7106/CJD.200509.0185. [46] J. Jun, J.-H. Shin, and M. Dhayal, "Surface state of TiO2 treated with low ion energy plasma," Applied Surface Science, vol. 252, no. 10, pp. 3871-3877, 2006, doi: 10.1016/j.apsusc.2005.06.004. [47] G. Çelebi Efe, E. Yenilmez, İ. Altinsoy, S. Türk, and C. Bindal, "Characterization of UHMWPE- HAp coating produced by dip coating method on Ti6Al4V alloy," Surface and Coatings Technology, vol. 418, 2021, doi: 10.1016/j.surfcoat.2021.127091. [48] D. Liu, Z. Ma, W. Zhang, B. Huang, H. Zhao, and L. Ren, "Superior antiwear biomimetic artificial joint based on high-entropy alloy coating on porous Ti6Al4V," Tribology International, vol. 158, 2021, doi: 10.1016/j.triboint.2021.106937. [49] D. Liu, Z. Ma, H. Zhao, L. Ren, and W. Zhang, "Nano-indentation of biomimetic artificial bone material based on porous Ti6Al4V substrate with Fe22Co22Ni22Ti22Al12 high entropy alloy coating," Materials Today Communications, vol. 28, 2021, doi: 10.1016/j.mtcomm.2021.102659. [50] L. Cui, H. Li, C. Gong, J. Huang, and D. Xiong, "A biomimetic bilayer coating on laser-textured Ti6Al4V alloy with excellent surface wettability and biotribological properties for artificial joints," Ceramics International, vol. 48, no. 18, pp. 26264-26273, 2022, doi: 10.1016/j.ceramint.2022.05.309. [51] D. Liu, H. Xie, Z. Ma, W. Zhang, H. Zhao, and L. Ren, "Simultaneous enhancement of anti-friction and wear resistance performances via porous substrate and FeCoNiTiAl high entropy alloy coating of artificial joint materials," Journal of Materials Research and Technology, vol. 19, pp. 2907-2915, 2022, doi: 10.1016/j.jmrt.2022.06.051. [52] M. Hussein, M. Kumar, N. Ankah, and A. Abdelaal, "Surface, mechanical, and in vitro corrosion properties of arc-deposited TiAlN ceramic coating on biomedical Ti6Al4V alloy," Transactions of Nonferrous Metals Society of China, vol. 33, no. 2, pp. 494-506, 2023, doi: 10.1016/s1003-6326(22)66122-3. [53] J. Pu et al., "Fretting corrosion behavior of Ti6Al4V alloy against zirconia-toughened alumina ceramic in simulated body fluid," J Mech Behav Biomed Mater, vol. 142, p. 105860, Jun 2023, doi: 10.1016/j.jmbbm.2023.105860. [54] G. Rotella, F. Cosco, M. R. Saffioti, and D. Umbrello, "Evaluation of fretting corrosion fatigue in burnishing of Ti6Al4V component for artificial hip joint," CIRP Annals, vol. 72, no. 1, pp. 509-512, 2023, doi: 10.1016/j.cirp.2023.04.010. [55] X. Chen, R.-f. Zhu, H. Gao, W.-l. Xu, G.-y. Xiao, C.-z. Chen, and Y.-p. Lu, "A high bioactive alkali-treated titanium surface induced by induction heat treatment," Surface and Coatings Technology, vol. 385, 2020, doi: 10.1016/j.surfcoat.2020.125362. [56] X. Zhao et al., "Enhancement of hydroxyapatite formation on titanium surface by alkali heat treatment combined with induction heating and acid etching," Surface and Coatings Technology, vol. 399, 2020, doi: 10.1016/j.surfcoat.2020.126173. [57] S. Amin Yavari et al., "Bone regeneration performance of surface-treated porous titanium," Biomaterials, vol. 35, no. 24, pp. 6172-81, Aug 2014, doi: 10.1016/j.biomaterials.2014.04.054. [58] Q. Tan, Z. Gao, J. Yan, D. Xia, and W. Hu, "Effect of chloride ions in acid and salt solutions on self-repairing ability and corrosion performance of titanium dioxide-fluorosiloxane superhydrophobic coating," Progress in Organic Coatings, vol. 146, 2020, doi: 10.1016/j.porgcoat.2020.105675. [59] M. Shubbak, "Scanning Electron Microscope " in Materials Science: Academic Laboratory Experiments 2018, ch. 6, p. 28. [60] A. M. Diez-Pascual, D. L. Cruz, and A. L. Redondo, "Advanced Carbon-Based Polymeric Nanocomposites for Forensic Analysis," Polymers (Basel), vol. 14, no. 17, Aug 31 2022, doi: 10.3390/polym14173598. [61] M. Associates, "TECH Notes WDSvsEDS," 2021. [62] A. Hossain, F. Gulshan, and A. S. W. Kurny, "Electrochemical Investigation of Corrosion Behavior Heat Treated Al-6Si-0.5Mg-xCu (x = 0, 0.5, 1, 2, and 4 wt%) Alloys," International Journal of Corrosion, vol. 2014, pp. 1-6, 2014, doi: 10.1155/2014/356752. [63] 于淑君, "電化學電池," 2017. [64] R. A. M. A. Majid Hameed Abdulmajeed, "TRIBOCORROSION," p. 91, 2016. [65] A. Pardo, S. Feliu, M. C. Merino, R. Arrabal, and E. Matykina, "Electrochemical Estimation of the Corrosion Rate of Magnesium/Aluminium Alloys," International Journal of Corrosion, vol. 2010, pp. 1-8, 2010, doi: 10.1155/2010/953850. [66] M. Daniyal and S. Akhtar, "Corrosion assessment and control techniques for reinforced concrete structures: a review," Journal of Building Pathology and Rehabilitation, vol. 5, no. 1, 2019, doi: 10.1007/s41024-019-0067-3. [67] ZwickRoell. "About the Vickers test method (determination of Vickers hardness HV)." https://www.zwickroell.com/industries/metals/metals-standards/vickers-test-iso-6507/ (accessed. [68] MA-tek. "FIB." https://www.matek.com/zh-TW/services/index/FIB (accessed. [69] J. Melngailis, "Focused ion beam technology and applications," Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, vol. 5, no. 2, pp. 469-495, 1987, doi: 10.1116/1.583937. [70] Y.-L. L. Yu-Ting Peng, Chien-Chun Chen. "The Application of Three-dimensional Atomic Electron Tomography to Semiconductor Devices." (accessed. [71] J. Gierak, "Focused Ion Beam nano-patterning from traditional applications to single ion implantation perspectives," Nanofabrication, vol. 1, no. 1, p. 40, 2014, doi: 10.2478/nanofab-2014-0004. [72] 金鉴实验室李工. "简单介绍聚焦离子束扫描电子显微镜FIB-SEM的工作原理." https://zhuanlan.zhihu.com/p/663211440 (accessed. [73] M. Panalytical. "X 光繞射 (XRD)." https://www.malvernpanalytical.com/tw/products/technology/xray-analysis/x-ray-diffraction (accessed. [74] I. S. Technology. "X光繞射分析 (XRD)." https://www.istgroup.com/tw/service/xrd/ (accessed. [75] Y. H.-m. XU Lei, JIANG Rong-feng, WANG Yan-feng, WU Liang, WANG Sheng-feng. "Advances in X-Ray Diffraction for the Determination of Clay Minerals in Soil." https://www.gpxygpfx.com/article/2020/1000-0593-40-4-1227.html# (accessed. [76] 維基百科自由的百科全書. "布拉格定律." https://zh.wikipedia.org/zh-tw/%E5%B8%83%E6%8B%89%E6%A0%BC%E5%AE%9A%E5%BE%8B (accessed. [77] NARLabs國家實驗研究院. "利用X-ray 看透材料原子排列結構世界." https://www.narlabs.org.tw/tw/xcscience/cont?xsmsid=0I148638629329404252&sid=0K107352975420455604 (accessed. [78] J. Menčík, "Nanoindentation Techniques for the Determination of Mechanical Properties of Materials in Dentistry," in Emerging Nanotechnologies in Dentistry, 2012, pp. 289-306. [79] W. C. Oliver and G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," Journal of Materials Research, vol. 7, no. 6, pp. 1564-1583, 2011, doi: 10.1557/jmr.1992.1564. [80] Y.-C. C. Jenq-Gong Duh, "Technology Development, Processing and Characterization Methodology in Nano Scale Hard Coatings," 科儀新知第三十三卷第三期, 2011. [81] a. G. M. P. W. C. Oliver, "Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology," Materials Research, 2004. [82] G. Huang, H. Si, L. Zou, H. Zhang, J. Liao, and S. Lin, "Phase Modulation of Ti3O/R-TiO2 Nanocomposites for the Self-Powered Photoelectrochemical Sensing of Tetracycline," ACS Applied Nano Materials, vol. 7, no. 1, pp. 715-725, 2023, doi: 10.1021/acsanm.3c04849. [83] N. W. Khun, A. W. Y. Tan, W. Sun, and E. Liu, "Effect of Heat Treatment Temperature on Microstructure and Mechanical and Tribological Properties of Cold Sprayed Ti-6Al-4V Coatings," Tribology Transactions, vol. 60, no. 6, pp. 1033-1042, 2016, doi: 10.1080/10402004.2016.1244584. [84] Y. Zhang and W. Wang, "A facile fabrication of Ag/SiC composite coating with high mechanical properties and corrosion resistance by electroless plating," Materials Today Communications, vol. 36, 2023, doi: 10.1016/j.mtcomm.2023.106737. [85] Y.-F. Kao, T.-D. Lee, S.-K. Chen, and Y.-S. Chang, "Electrochemical passive properties of AlxCoCrFeNi (x=0, 0.25, 0.50, 1.00) alloys in sulfuric acids," Corrosion Science, vol. 52, no. 3, pp. 1026-1034, 2010, doi: 10.1016/j.corsci.2009.11.028. [86] N. Kumar, D. Dwivedi, A. Sharma, B. Ahn, and M. K. Manoj, "Influence of various heat treatment procedures on the corrosion behavior of Al–Zn–Mg–Cu alloys," Materials Research Express, vol. 6, no. 12, 2019, doi: 10.1088/2053-1591/ab5458. [87] Y. Yao, Y. Jin, W. Gao, X. Liang, J. Chen, and S. Zhu, "Corrosion Behavior of AlFeCrCoNiZrx High-Entropy Alloys in 0.5 M Sulfuric Acid Solution," Metals, vol. 11, no. 9, 2021, doi: 10.3390/met11091471. [88] T. T. Committee, "Standard Practice for Instrumented Indentation Testing1," 2023, doi: 10.1520/e2546-15r23. [89] I. STANDARD, "Metallic materials — Instrumented indentation test for hardness and materials parameters," 2015. [90] Leyland、Matthews, "On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour," 2000. [91] T. Y. Tsui et al., "Nanoindentation and Nanoscratching of Hard Carbon Coatings for Magnetic Disks," MRS Proceedings, vol. 383, 2011, doi: 10.1557/proc-383-447. [92] V. Kulikovsky, V. Vorlíček, P. Boháč, M. Stranyánek, R. Čtvrtlík, A. Kurdyumov, and L. Jastrabik, "Hardness and elastic modulus of amorphous and nanocrystalline SiC and Si films," Surface and Coatings Technology, vol. 202, no. 9, pp. 1738-1745, 2008, doi: 10.1016/j.surfcoat.2007.07.029. [93] M. Zhang, F. Zhou, Y. Fu, Q. Wang, and J. Kong, "Electrochemical corrosion and tribological properties of CrMoCN coatings sliding against Al2O3 balls in artificial seawater," Surface and Coatings Technology, vol. 417, 2021, doi: 10.1016/j.surfcoat.2021.127225. [94] K.-C. Lai, S.-C. Chao, K.-K. Tseng, J.-W. Yeh, and P.-Y. Chen, "Biocompatible as-cast and homogenized TiNbTaZrMoV high entropy alloys: mechanical properties, corrosion resistance and in vitro studies," Journal of Materials Research and Technology, vol. 24, pp. 9708-9721, 2023, doi: 10.1016/j.jmrt.2023.05.201. [95] W. Österle, D. Klaffke, M. Griepentrog, U. Gross, I. Kranz, and C. Knabe, "Potential of wear resistant coatings on Ti–6Al–4V for artificial hip joint bearing surfaces," Wear, vol. 264, no. 7-8, pp. 505-517, 2008, doi: 10.1016/j.wear.2007.04.001. [96] J. Corona-Gomez and Q. Yang, "Wear and corrosion characterization of single and multilayered nanocrystalline tantalum coatings on biomedical grade CoCrMo alloy," Materialia, vol. 24, 2022, doi: 10.1016/j.mtla.2022.101518. [97] C. Kai, Z. Dekun, Z. Gaofeng, H. Tianqing, and G. Shirong, "Research on the torsional fretting behavior of the head–neck interface of artificial hip joint," Materials & Design (1980-2015), vol. 56, pp. 914-922, 2014, doi: 10.1016/j.matdes.2013.12.007. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2026-08-21 校外 Off-campus:開放下載的時間 available 2026-08-21 您的 IP(校外) 位址是 216.73.216.119 現在時間是 2025-06-07 論文校外開放下載的時間是 2026-08-21 Your IP address is 216.73.216.119 The current date is 2025-06-07 This thesis will be available to you on 2026-08-21. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2026-08-21 |
QR Code |