論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-08-18
校外 Off-campus:開放下載的時間 available 2025-08-18
論文名稱 Title |
可支援雙演算法且多模式的高面積效率極化碼解碼器之晶片架構設計 High-Hardware-Efficiency Polar Decoder Chip Architecture Reconfiguring SCL with Reconfigurable Pipelined Sorter and SCF with Non-Uniform 4-Segment CRC |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
91 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-08-16 |
繳交日期 Date of Submission |
2023-08-18 |
關鍵字 Keywords |
極化碼解碼器、連續消除列表、連續消除反轉、可重置性、面積效率、硬體架構 Polar decoder, Successive Cancellation List, Successive Cancellation Flip, Reconfigurable, Area Efficiency, Hardware Architecture |
||
統計 Statistics |
本論文已被瀏覽 191 次,被下載 0 次 The thesis/dissertation has been browsed 191 times, has been downloaded 0 times. |
中文摘要 |
為了因應未來6G通訊技術需要能克服更險惡的環境,以及更龐大的資料傳輸和考量到晶片的成本,因此擁有邊解碼獨特性的極化碼將會是我們的研究對象,相較於主流的低密度奇同位元校驗(Low Density Parity Check, LDPC碼),極化碼透過數學證明其通道容量可以達到香濃極限的技術,因此擁有更好的錯誤更正能力,也更能夠對抗險惡且千變換化的6G通訊環境之中。因此本架構期望能設計出高彈性的多模式晶片,其中包括更高的吞吐量、更好的解碼效能和低面積之設計,以實現一個能更符合商業化的晶片。 本論文將提出四項重要的技術,包括更少的排序級數和優良的管線化設計與平行化設計,以提升整體電路的吞吐量(Throughput);高可靠度分段式循環冗餘校驗碼之封包架構設計,進而提升錯誤更正能力;改善硬體資料覆蓋的問題,進而提升演算法延遲過高的問題;低面積儲存單元設計,進而提高整體電路的硬體使用率。透過上述四項技術的提出,以及支援多模式設計,因此本研究主打高面積效率且具高彈性的晶片設計。 最終,透過TSMC 40nm CMOS至成實現本硬體架構,完成整體晶片設計的流程。 |
Abstract |
In order to address the requirements of future 6G communication technology, which will face more challenging environments and the need for larger data transmission while considering chip costs, our research focuses on polar codes with unique edge decoding capabilities. Compared to the mainstream Low Density Parity Check (LDPC) codes, polar codes have demonstrated through mathematical proofs their ability to achieve the Shannon capacity limit. This provides them with superior error correction capabilities, making them better suited to combat the complex and dynamic communication environments of 6G. Thus, this framework aims to design highly flexible multi-mode chips, encompassing higher throughput, efficient decoding performance, and compact designs to achieve a more commercially viable chip. This paper introduces four crucial techniques: (a) Reduced sorting stages and excellent pipelining and parallelism designs to enhance the overall circuit throughput. (b) Packet architecture design for high-reliability segmented cyclic redundancy check codes to boost error correction capabilities. (c) Improvement in hardware data coverage to mitigate algorithm latency issues. (d) Low-area storage unit design to increase the hardware utilization of the overall circuit. Through the implementation of these four techniques and support for multi-mode design, this study emphasizes high area efficiency and chip flexibility in its design. Finally, the hardware architecture is realized using TSMC's 40nm CMOS process, concluding the entire chip design process. |
目次 Table of Contents |
目錄 論文審定書........................................................................................................................i 誌謝...................................................................................................................................ii 摘要..................................................................................................................................iii Abstract………………………………………………………………………………….iv 圖次.................................................................................................................................vii 表次...................................................................................................................................x 第一章 緒論 1 1.1 背景 1 1.2 動機與設計目標 3 第二章 極化碼介紹 6 2.1 極化碼理論 6 2.2 連續消除列表解碼演算法 9 2.3 連續消除解碼和連續消除反轉演算法之解碼流程 10 第三章 可支援雙演算法且多模式的高面積效率極化碼解碼器 12 3.1 系統介紹 12 3.1.1 系統主架構與模式選擇分析 12 3.1.2 演算法運算之硬體優化 16 3.1.3 控制單元(Control Unit) 17 3.2 技術一:低延遲之多位元樹葉節點解碼器 18 3.2.1 排序重要性 18 3.2.2 三級排序器與路徑當量平行化設計 19 3.2.3 時序排程與管線化設計 24 3.2.4 延遲分析 26 3.3 技術二:具高可靠度之非規律化循環冗餘校驗封包架構設計 29 3.3.1 循環冗餘校驗碼長度與錯誤偵測分析探討 29 3.3.2 非規律化分段式循環冗餘校驗封包架構設計與實現 32 3.3.3 效能分析 36 3.4 技術三:部分和暫存器資料覆蓋問題優化 38 3.4.1 樹葉節點可靠度判斷器(LNRJ)實現 39 3.4.2 反轉路徑判斷器(FPJ) 40 3.4.3 延遲分析 45 3.5 技術四:低面積儲存單元設計 49 3.5.1 高使用率儲存架構 49 3.5.2 非規律量化設計 52 3.5.3 非規律運算單元架構與多工器優化 54 3.5.4 面積分析 59 第四章 晶片實現 62 4.1 標準單元晶片設計流程 62 4.2 合成結果分析 63 4.3 可測試性晶片設計與分析 65 4.4 形式驗證(FORMAL VERIFICATION) 67 4.5 晶片佈局成果 68 4.6 效能比較 69 第五章 結語與未來展望 74 5.1 結語 74 5.2 未來展望 74 參考文獻 75 |
參考文獻 References |
[1] T. Zhang, S. Li, and B. Yu, "A Channel Coding Scheme Based on Multi-kernel Polar Codes for Transmitting Data over Compressed Voice Channels," in 2020 IEEE 6th International Conference on Computer and Communications (ICCC), 2020: IEEE, pp. 674-679. [2] D. P. Nguyen, T. H. Tran, and Y. Nakashima, "A high coding-gain reduced-complexity serial concatenated error-control coding solution for wireless sensor networks," in 2016 IEEE International Conference on Signal and Image Processing (ICSIP), 2016: IEEE, pp. 694-698. [3] E. Arikan, "Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels," IEEE Transactions on information Theory, vol. 55, no. 7, pp. 3051-3073, 2009. [4] I. Tal and A. Vardy, "How to construct polar codes," IEEE Transactions on Information Theory, vol. 59, no. 10, pp. 6562-6582, 2013. [5] S. B. Korada, E. Şaşoğlu, and R. Urbanke, "Polar codes: Characterization of exponent, bounds, and constructions," IEEE Transactions on Information Theory, vol. 56, no. 12, pp. 6253-6264, 2010. [6] A. Sharma and M. Salim, "Polar code: The channel code contender for 5G scenarios," in 2017 International conference on computer, communications and electronics (Comptelix), 2017: IEEE, pp. 676-682. [7] G. He et al., "Beta-expansion: A theoretical framework for fast and recursive construction of polar codes," in GLOBECOM 2017-2017 IEEE Global Communications Conference, 2017: IEEE, pp. 1-6. [8] I. Tal and A. Vardy, "List decoding of polar codes," IEEE Transactions on Information Theory, vol. 61, no. 5, pp. 2213-2226, 2015. [9] Y. Pan, J. Li, and Y. Fang, "A new polar code SCF method based on effective flip bits," in 2019 IEEE 2nd International Conference on Electronics and Communication Engineering (ICECE), 2019: IEEE, pp. 108-111. [10] G. Trofimiuk, E. Belyaev and P. Trifonov, "Distributed Video Coding Based on Polar Codes," in IEEE Communications Letters, vol. 27, no. 3, pp. 778-781, March 2023. [11] R. M. Oliveira and R. C. de Lamare, "Rate-Compatible Polar Code Construction Based on Extension and Non-Uniform Channel Polarization for Iot Applications," 2021 IEEE Statistical Signal Processing Workshop (SSP), Rio de Janeiro, Brazil, 2021, pp. 116-120. [12] W. Li and Z. He, "An Efficient CRC-Aided Parity-Check Concatenated Polar Coding," 2021 IEEE Asia Conference on Information Engineering (ACIE), Sanya, China, 2021, pp. 1-5. [13] K. Mueadkhunthod, W. Phakphisut, L. M. M. Myint and P. Supnithi, "An Early Termination Technique of Polar Codes for IR-HARQ Scheme," 2020 International Conference on Advanced Technologies for Communications (ATC), Nha Trang, Vietnam, 2020, pp. 193-198. [14] R. Xu, P. Chen, M. Zhu and B. Bai, " A Reliability-Based Adaptive IR-HARQ Scheme for Polar Coded Systems," 2020 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 2020, pp. 871-876. [15] M. Rowshan, A. Burg and E. Viterbo, "Polarization-Adjusted Convolutional (PAC) Codes: Sequential Decoding vs List Decoding," in IEEE Transactions on Vehicular Technology, vol. 70, no. 2, pp. 1434-1447, Feb. 2021. [16] M. -C. Chiu and Y. -S. Su, "Design of Polar Codes and PAC Codes for SCL Decoding," in IEEE Transactions on Communications, vol. 71, no. 5, pp. 2587-2601, May 2023. [17] L. Ma and L. Zhang, "Parallel Concatenated Code Combining Polar Code and LDPC Code on AWGN Channel," 2021 IEEE 15th International Conference on Anti-counterfeiting, Security, and Identification (ASID), Xiamen, China, 2021, pp. 57-60. [18] B. Feng and R. Liu, "Efficient-Memory and Low-Latency BP Decoding Algorithm for Polar Codes," in IEEE Communications Letters, vol. 24, no. 6, pp. 1236-1239, June 2020. [19] A. S. Tan, O. Sahin and S. Hong, "CRC Aided Short-Cycle Free BP Decoding for Polar Codes,"2021 International Symposium on Networks, Computers and Communications (ISNCC), Dubai, United Arab Emirates, 2021, pp. 1-6. [20] S. -Y. Zhang and B. Shahrrava, "Turbo Receiver for Polar-Coded OFDM systems with unknown CSI," 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), London, ON, Canada, 2020, pp. 1-4. [21] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, "Hardware architectures for successive cancellation decoding of polar codes," in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011: IEEE, pp. 1665-1668. [22] Y. Huang, Z. Zhang, X. You, and C. Zhang, "Efficient folded SC polar line decoder," in 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), 2018: IEEE, pp. 1-5. [23] H. Vangala, E. Viterbo, and Y. Hong, "A new multiple folded successive cancellation decoder for polar codes," in 2014 IEEE Information Theory Workshop (ITW 2014), 2014: IEEE, pp. 381-385. [24] B. Yuan and K. K. Parhi, "Low-latency successive-cancellation polar decoder architectures using 2-bit decoding," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 4, pp. 1241-1254, 2013. [25] C. Zhang, B. Yuan, and K. K. Parhi, "Reduced-latency SC polar decoder architectures," in 2012 IEEE International conference on communications (ICC), 2012: IEEE, pp. 3471-3475. [26] Z. Zhang, L. Zhang, X. Wang, C. Zhong and H. V. Poor, "A Split-Reduced Successive Cancellation List Decoder for Polar Codes," in IEEE Journal on Selected Areas in Communications, vol. 34, no. 2, pp. 292-302. [27] E. Arikan, "Channel polarization: A method for constructing capacity-achieving codes," 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada, 2008, pp. 1173-1177. [28] G. He et al., "Beta-Expansion: A Theoretical Framework for Fast and Recursive Construction of Polar Codes," GLOBECOM 2017 - 2017 IEEE Global Communications Conference, Singapore, 2017, pp. [29] C. Leroux, I. Tal, A. Vardy and W. J. Gross, "Hardware architectures for successive cancellation decoding of polar codes," 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 2011, pp. 1665-1668. [30] O. Afisiadis, A. Balatsoukas-Stimming and A. Burg, "A low-complexity improved successive cancellation decoder for polar codes," 2014 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2014, pp. 2116-2120. [31] I. Tal and A. Vardy, "List Decoding of Polar Codes," in IEEE Transactions on Information Theory, vol. 61, no. 5, pp. 2213-2226, May 2015. [32] B. Atila and B. Kelleci, "Recursive odd-even sorter for vector quantizer," in 2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST), 4-6 May 2017 , pp. 1-4. [33] A. Balatsoukas-Stimming, M. Bastani Parizi and A. Burg, "On metric sorting for successive cancellation list decoding of polar codes," 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 2015, pp. 1993-1996. [34] C. Yun-Nan, "Design of an area-efficient partial-sum architecture for polar decoders based on new matrix generator," in 2016 14th IEEE International New Circuits and Systems Conference (NEWCAS), 26-29 June 2016 2016, pp. 1-4. [35] G. Berhault, C. Leroux, C. Jego and D. Dallet, "Partial sums computation in polar codes decoding," 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 2015, pp. 826-829. [36] C. -F. Teng, C. -H. Chen and A. -Y. Wu, "An Ultra-Low Latency 7.8–13.6 pJ/b Reconfigurable Neural Network-Assisted Polar Decoder with Multi-Code Length Support," 2020 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 2020, pp. 1-2. [37] A. Balatsoukas-Stimming, A. J. Raymond, W. J. Gross, and A. Burg, "Hardware Architecture for List Successive Cancellation Decoding of Polar Codes," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 8, pp. 609-613, 2014. [38] A. Balatsoukas-Stimming, M. B. Parizi and A. Burg, "LLR-Based Successive Cancellation List Decoding of Polar Codes," in IEEE Transactions on Signal Processing, vol. 63, no. 19, pp. 5165-5179, Oct.1, 2015. [39] J. Lin and Z. Yan, "An Efficient List Decoder Architecture for Polar Codes," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 11, pp. 2508-2518, Nov. 2015. [40] P. Giard et al., "PolarBear: A 28-nm FD-SOI ASIC for Decoding of Polar Codes," in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 7, no. 4, pp. 616-629, Dec. 2017. [41] U. Lee, J. H. Roh, C. Hwangbo and M. H. Sunwoo, "A Uniformly Segmented SC-Flip Decoder for Polar Codes with Memory Reduction Methods," 2021 IEEE International Symposium on Circuits and System3s (ISCAS), Daegu, Korea, 2021, pp. 1-5. [42] F. Ercan, T. Tonnellier and W. J. Gross, "Energy-Efficient Hardware Architectures for Fast Polar Decoders," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 1, pp. 322-335, Jan. 2020. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2025-08-18 校外 Off-campus:開放下載的時間 available 2025-08-18 您的 IP(校外) 位址是 216.73.216.187 現在時間是 2025-06-20 論文校外開放下載的時間是 2025-08-18 Your IP address is 216.73.216.187 The current date is 2025-06-20 This thesis will be available to you on 2025-08-18. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2025-08-18 |
QR Code |