論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2026-08-18
校外 Off-campus:開放下載的時間 available 2026-08-18
論文名稱 Title |
以傾斜角電極結構製備低損耗表面聲波濾波器 Fabrication of Low Loss Surface Acoustic Wave Filters with Tilted Electrode Structures |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
103 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-07-18 |
繳交日期 Date of Submission |
2023-08-18 |
關鍵字 Keywords |
表面聲波濾波器、鉭酸鋰、指叉式電極、傾斜角度、插入損失、機電耦合係數、品質因子 SAW filter, LiTaO3, IDT, Tilt angle, Insertion loss, Electromechanical coupling coefficient (k_eff^2), Quality factor (Q) |
||
統計 Statistics |
本論文已被瀏覽 84 次,被下載 0 次 The thesis/dissertation has been browsed 84 times, has been downloaded 0 times. |
中文摘要 |
本實驗設計了具有抑制雜散響應、低插入損耗和高帶外抑制特性的表面聲波(SAW)濾波器;採用42°Y-cut LiTaO3作為壓電基板,並在基板上以直流磁控濺鍍技術沉積具有傾斜角結構的指叉式(IDT)電極。由於鋁(Al)金屬材料具有高導電性和低密度等優點,因此本實驗選擇鋁金屬作為電極,以降低信號傳輸損耗,減小質量負載效應,並防止波速下降。 本實驗初步採用黃光微影系統研究了不同傾斜角度(0°、3°、5°、7°)的IDT電極對低頻SAW共振器與濾波器的插入損耗(IL)、機電耦合係數(k_eff^2)和品質因子(Q)的影響,並使用網絡分析儀測量低頻SAW濾波器的頻率響應,確定了最佳傾斜角度為5°。隨後,採用電子束微影系統製備具有上述最佳傾斜角度的高頻SAW濾波器。最後的實驗結果表明,本研究所設計製作之高頻SAW濾波器具有中心頻率為2.6 GHz、插入損耗為1.21 dB、k_eff^2值為5.4%、Q值為292.67和帶外抑制為41.04 dB等優異之特性。 |
Abstract |
In this study, the surface acoustic wave (SAW) filters with suppressed spurious response, low insertion loss, and high out-of-band rejection were developed. A 42°Y-cut LiTaO3 was utilized as the piezoelectric substrate and the interdigital transducer (IDT) electrodes with tilted structures were deposited on the substrate through a DC magnetron sputtering technology. Aluminum (Al) was chosen as the metal material for electrode fabrication due to its advantages of high conductivity and low density compared to other metals, which will result in a reduction of signal transmission loss, a minimization of mass loading effect, and prevent a decrease in wave velocity. The experiment employed photolithography processes to investigate the influences of different tilt angles of IDTs on the insertion loss (IL), electromechanical coupling coefficient (k_eff^2), and quality factor (Q) of the low-frequency SAW devices. By measuring the frequency responses of low-frequency filters using a network analyzer, the optimum tilt angle was determined to be 5o. Subsequently, the electron beam lithography technology was employed to fabricate high-frequency SAW filters with the optimal tilt angle obtained above. Finally, the experimental results showed that the characteristics of the high-frequency SAW filter designed and manufactured in this research existed a center frequency of 2.6 GHz, a insertion loss of 1.21 dB, a k_eff^2 value of 5.4 %, a Q value of 292.67 and a side band rejection of 41.04 dB, respectively. |
目次 Table of Contents |
中文審定書 i 致謝 ii 摘要 iii ABSTRACT iv 目錄 v 圖目錄 viii 表目錄 xi 第一章 前言 1 1.1 市場背景與研究動機 1 1.2 表面聲波元件結構 3 1.3 文獻回顧 5 1.4 研究內容 6 第二章 理論分析 7 2.1 壓電效應介紹 7 2.1.1 正、逆壓電效應 9 2.1.2 壓電材料 11 2.2 鉭酸鋰(LT)特性 13 2.3 表面聲波元件理論 15 2.3.1 表面聲波元件之設計 16 2.3.2 表面聲波元件之特性分析 19 2.3.3 表面聲波元件之種類 22 2.4 表面聲波之非理想效應 29 2.5 濾波器原理 31 2.5.1 濾波器效能評估 33 2.6 電子束微影技術 35 2.7 乾式蝕刻技術 38 2.7.1 蝕刻製程與非理想效應 39 2.7.2 感應耦合電漿蝕刻原理 40 第三章 實驗設計 41 3.1 實驗流程設計 41 3.2 SAW元件設計 43 3.2.1 光罩設計 43 3.2.2 改善雜散響應設計 48 3.2.3 共振器設計 50 3.2.4 濾波器設計 52 3.3 基板清洗 55 3.4 黃光微影製程 56 3.5 電極薄膜製作與分析 58 3.5.1 鋁薄膜沉積 58 3.5.2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 60 3.5.3 原子力顯微鏡 (Atomic Force Microscope, AFM) 60 3.5.4 四點探針 (Four point probe) 61 3.6 電子束微影 (ELECTRON BEAM LITHOGRAPHY, EBL) 62 3.7 感應耦合式高密度電漿蝕刻機 (ICP RIE SYSTEM, CHLORINE BASE) 64 3.7 網路分析儀 65 第四章 結果與討論 66 4.1 鋁電極分析 66 4.2 SAW元件之製備 68 4.2.1 AZ厚度 68 4.2.2 PMMA厚度 69 4.2.3 電子束微影劑量分析 71 4.2.4 ICP蝕刻製程 73 4.3 SAW共振器 74 4.4 SAW濾波器 76 4.4.1 1階濾波器 76 4.4.2 高頻1.5階濾波器 82 4.4.3 濾波器最佳參數 84 第五章 結論 86 第六章 未來展望 87 參考文獻 88 |
參考文獻 References |
[1] 范語瑄,” 5G 用戶 2022 突破 10 億大關 低延遲獨立組網成趨勢,新通訊元件 雜誌,2022。 [2] 沈靜怡,“Sezawa模態表面聲波共振器應用於人類免疫球蛋白E感測器之研究”,國立中山大學電機工程研究所,碩士論文,2012。 [3] Rayleigh, L., “On waves propagated along the plane surface of an elastic solid”, Proceedings of the London Mathematical Society, vol. 1, 1885. [4] R. M. White and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves”, Appl. Phys. Lett, vol. 17, pp. 314-316, 1965. [5] J. Koskela, J. Knuuttila, “Acoustic loss mechanisms in leaky SAW resonators on lithium tantalite”, IEEE transactions on ultrasonics, pp. 1517-1526, 2001. [6] S. Inoue, K. Nakamura H. Nakazawa, J. Tsutsumi, M. Ueda, and Y. Satoh, “Analysis of Rayleigh wave radiations from leaky SAW resonators’’, IEEE International Ultrasonics Symposium (IUS), pp. 1953-1956, 2013. [7] T. Yamada, K. Satoh, R. Nakagawa, T. Omori, K. Hashimoto and M. Yamaguchi, "Analysis of dispersion characteristics of shear-horizontal-type surface acoustic waves under waveguide structures," IEEE Symposium on Ultrasonics, pp. 1692-1695,2003. [8] H. Nakamura, T. Komatsu, H. Nakanishi, T. Tsurunari and J. Fujiwara, "Reduction of transverse leakage for SAW resonators on LiTaO3 substrate," 2012 IEEE International Ultrasonics Symposium, pp. 1248-1251,2012. [9] H. Iwamoto, T. Takai, Y. Takamine, T. Nakao, T. Fuyutsume and M. Koshino, "Transverse Modes in I.H.P. SAW Resonator and Their Suppression Method," 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 2018, pp. 1-4, doi: 10.1109/ULTSYM.2018.8580175. [10] Arthur Ballato, “Piezoelectricity: History and New Thrust”, 1996 IEEE Ultrasonics Symposium, pp. 575-583, 1996. [11] J. Curie and P. Curie, “Development by pressure of polar electricity in hemihedral crystals with inclined faces”, Bulletin de la Societe mineralogique de France, vol. 3, pp. 90-93, 1880. [12] 王景山、劉天飛、孫瑋,”聲表面波器件模擬與仿真”,國防工業出版社,北京,2002 [13] M. Marangoni and R. Ramponi, “Nonlinear Optical Waveguides in Stoichiometric Lithium Tantalate”, Ferroelectric Crystals for Photonic Applications, Eds. Springer Berlin Heidelberg, pp. 79-99, 2009. [14] 徐維駿,”利用週期性極化反轉結構之光參數過程產生可調可見光與寬頻光源”,國立交通大學光電工程研究所,碩士論文,2009。 [15] Y. Wang, Y. Jiang, “Dielectric and piezoelectric anisotropy of lithium niobate and lithium tantalate single crystals”, 2009 18th IEEE International Symposium on the Applications of Ferroelectrics, 2009. [16] K. Yamanouch, “High coupling and zero TCF SH-SAW and SH-Boundary SAW using electrodes/Rotated Y-X LiTaO3 and SiO2/electrodes/Rotated Y-X LiTaO3”, in Ultrasonics Symposium (IUS), 2013 IEEE International, pp. 1061-1064, 2013. [17] Ken-ya Hashimoto, Masatsune Yamaguchi, “Optimum Leaky-SAW Cut of LiTaO3 for Minimised Insertion Loss Devices”, 1997 IEEE Ultrasonics Symposium, pp. 245-254, 1997. [18] 廖珮淳,“以AlN/Si3N4/Si結構製作第四代通訊用表面聲波元件”,國立中山大學電機工程學系,碩士論文,2013。 [19] O. G. Atar, “Graphene-Propagating Wave Interaction by means of Surface Acoustic Waves (SAW) Devices”, 2013. [20] 郭家銘,“氣壓輔助接觸轉印與遮罩植入微影技術製作高頻表面聲波元件”,國立成功大學機械工程學系,碩士論文,2010。 [21] 蔡世鴻、湯譯增、洪茂峰、王永和,“表面聲波濾波器的設計準則”,材料科學與工程,卷34,頁231-238,2002。 [22] 林凱,“背蝕型表面聲波共振器製備暨IDT設計探討”,國立中山大學電機工程學系,碩士論文,2020。 [23] P. H. Lee, K. H. Yoon and J. K. Lee, “Influence of electrode configurations on the quality factor and piezoelectric coupling constant of solidly mounted bulk acoustic wave resonators”, Journal of Applied Physics, vol. 92, pp. 4062-4069, 2002. [24] Rich Ruby (SM), “Review and Comparison of Bulk Acoustic Wave FBAR, SMR Technology”, 2007 IEEE Ultrasonics Symposium, 2007. [25] Vetury, Ramakrishna, Michael D. Hodge and Jeffrey B. Shealy, “High power, wideband single crystal XBAW technology for sub-6 GHz micro RF filter applications.” 2018 IEEE International Ultrasonics Symposium (IUS), 2018. [26] C. Campbell, “Surface acoustic wave devices and their signal processing applications”, Elsevier, 1989. [27] 高國陞,“表面聲波元件之頻率及溫度特性之研究”,國立中山大學電機工程學系,博士論文,2004。 [28] M. A. Allah, J. Kaitila, R. Thalhammer, W. Weber and D. Schmitt-Landsiedel, “Temperature compensated solidly mounted resonators with thin SiO2 layers”, 2009 IEEE International Ultrasonics Symposium, pp.859-862, 2009. [29] 黃仕泓,柯正浩,“表面聲波感測器之前瞻研究”,物理雙月刊,第廿三卷,第三期,頁512-518,2004。 [30] Taiyo Yuden Co, “Working principles and Applications of SAW/FBAR Devices”. [31] C. K. Campbell, “Surface Acoustic Wave Devices for Mobile and Wireless Communications”, 1 edition. San Diego: Academic Press, 1998. [32] Y. Kaneda, M. Tajima, T. Omori, K. Hashimoto, M. Yamaguchi, J. Tsutsumi, O.Ikaya and Y. Satoh, “An SAW Filter Employing Weighted Reflectors and a Multi-strip Coupler”, 1999 Joint Meeting EFTF - IEEE IFCS, pp. 941-944, 1999. [33] Y. Satoh, O. Ikata, T. Miyashita, and H. Ohmori, “RF SAW Filters, in International Symposium on Acoustic Wave Devices for Future Mobile Communication Systems”, pp. 125-132, 2001. [34] M. Lewis, “SAW filters employing interdigitated interdigital transducers, IIDT”, IEEE Ultrasonics Symp. Proc. pp. 12-17, 1982. [35] Clemens C.W. Ruppel, Werner Rude, Gerd Scholl, Karl Ch. Wagner and O. Manner, “Review of models for low-loss filter design and applications”, 1994 Proceedings of IEEE Ultrasonics Symposium. vol. 1. pp. 313-324, 1994. [36] 林上懷,“於鉭酸鋰基板上製備氮化鋁薄膜以應用於表面聲波元件”,中山大學電機工程學系研究所,碩士論文,2016。 [37] Milad Zolfagharloo Koohi, Wenhao Peng, Amir Mortazawi, “An Intrinsically Switchable Balanced Ferroelectric FBAR Filter at 2 GHz”, 2020 IEEE/MTT-S International Microwave Symposium, pp.131-134, 2020. [38] T. Takai, H. Iwamoto, Y. Takamine, H. Yamazaki, T. Fuyutsume, H. Kyoya, T. Nakao, H. Kando, M. Hiramoto, T. Toi, M. Koshino, and N. Nakajima, “High-Performance SAW Resonator on New Multilayered Substrate Using LiTaO3 Crystal”, IEEE Transactions On Ultrasonics, Ferroelectrics, And Frequency Control, Vol. 64, No. 9, September 2017. [39] S. Inoue and M. Solal, "Spurious Free SAW Resonators on Layered Substrate with Ultra-High Q, High Coupling and Small TCF," 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 2018, pp. 1-9, doi: 10.1109/ULTSYM.2018.8579852. [40] 蕭宏,“半導體製程技術導論”,全華圖書,2014。 [41] 李冠霖,“應用於5G通訊n41頻帶之表面聲波濾波器開發”,國立中山大學電機工程學系,碩士論文,2021。 [42] H. Hatakeyama, T. Omori, Ken-ya Hashimoto, M. Yamaguchi, “Fabrication of SAW Devices Using SEM-Based Electron Beam Lithography and Lift-off Technique for Lab Use”, 2004 IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, pp.1896-1900, 2004. [43] 許進財、陳仕鴻,“電子束微影簡介”,國家奈米元件實驗室奈米通訊,卷15,第3期,2008。 [44] 徐正偉,“以步進機製備2.5 GHz之表面聲波共振器”,國立中山大學電機工程學系,碩士論文,2021。 [45] 張竣凱,“以電子束微影製備2.5 GHz階梯式表面聲波濾波器”,國立中山大學電機工程學系,碩士論文,2020。 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2026-08-18 校外 Off-campus:開放下載的時間 available 2026-08-18 您的 IP(校外) 位址是 13.59.111.209 現在時間是 2025-05-18 論文校外開放下載的時間是 2026-08-18 Your IP address is 13.59.111.209 The current date is 2025-05-18 This thesis will be available to you on 2026-08-18. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2026-08-18 |
QR Code |