Responsive image
博碩士論文 etd-0718108-172216 詳細資訊
Title page for etd-0718108-172216
論文名稱
Title
自動測試設備量產用的四蜂巢頻帶射頻測試載板之研製
Development of the Four Cellular-Band RF Loadboard for Mass Production on Automatic Test Equipment
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
197
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-30
繳交日期
Date of Submission
2008-07-18
關鍵字
Keywords
自動測試設備、射頻測試載板、四蜂巢頻帶
Four Cellular-Band, RF Loadboard, Automatic Test Equipment
統計
Statistics
本論文已被瀏覽 5839 次,被下載 9
The thesis/dissertation has been browsed 5839 times, has been downloaded 9 times.
中文摘要
此研究的目的在於探討如何研製一個用於自動化測試設備上,測試四頻手機用的高頻測試載板 (850 MHz GSM-USA, 900 MHz GSM, 1.8 GHz DCS,1.9 GHz PCS)。在此研究中,廣泛嚴謹地探討高頻測試載板上的關鍵零組件的特性,如:高頻繼電器、平衡-非平衡轉換器、高頻同軸電纜、電路板層與層之間的穿孔、微帶線效應、以及在高頻電路板佈線所須注意的事項。為了了解電路板在高頻的特性,特別準備一個實驗載板。在此實驗載板中,使用了 FR4及 Rogers 等不同基板、不同的微帶線電路結構及不同的板層與板層之間的穿孔結構,並加以量測比較。緊接著與高頻測試載板供應商合作,進行高頻測試載板的電磁模擬。在此模擬中,如:關鍵路徑上之平衡-非平衡轉換器、電壓控制振盪器的迴路濾波電路及測試插座均列入模擬,以檢視共振頻率是否出現在所設計的工作頻帶中。一個使用FR4材料的高頻測試板,便依模擬結果製造出來。這個高頻測試板,首先在離線的儀器設備上,稍做除錯及必要的調整,以確定功能正常。在調整過程中,匹配網路上的零件值,先採用模擬的建議值,接著用網路分析儀,量取其響應,並進行微調。微調是靠改變零件值或改變零件位置,以改變其響應。四個頻道的匹配網路,均依此方法達成微調。微調之後便可在Teradyne 自動化測試設備m-Flex上做量測及驗證。其方法是使用70個產品在同一部測試設備上,使用本論文所研製的測試載板及由母廠製造的測試載板,個別測試兩次。量測的資料便使用統計分析工具(Data Power) 加以分析,並計算其平均值、變異數、Cpk (Biased Process Capability) 、R&R (Repeatability and Reproducibility)... 等參數。由統計分析結果得到的結論是: 本論文中所研發的高頻測試載板符合原廠規格,而且可以使用於量產上。從此研究中,成功地建立了射頻載板的研發製程。在此研發製程中將大量倚重模擬以確保射頻載板的品質及功\能而非如傳統地倚靠經驗與錯誤嘗試。
Abstract
This research aims at the development of a RF mass production load board for 4 bands cellular phone (850 MHz GSM-USA, 900 MHz GSM, 1.8 GHz DCS and 1.9 GHz PCS). To construct a strong theoretical foundation, the characteristics of key components such as relays, balun, cables, vias, micro strip line on the load board and the RF rules for PCB layout are extensively studied. An experimental load board is also specially designed to study the characteristics of RF printed circuit board. In this experimental load board, different materials (FR4 and Rogers) and transmission lines (microstrip lines and differential lines) are specially made and measured. After studying this experimental load board, we co-work with the RF load board supplier KeyStone to do the simulation as the preparation of production load board. In this simulation, the actual layout (Gerber file) of critical path together with the socket is checked for the resonance frequency. The production load board is manufactured in FR4 and debugged in the off-line debugging station before a correlation process in the ATE (automatic test equipment). Fine tune of 4 bands matching circuit is done by changing the value and/or the position of component on the matching circuit with VNA. After the fine tune, 70 good devices were tested twice on the same u-Flex tester with the developed load board and the one sent from test center in Europe (reference loadboard). The test results are processed by statistics tool “Data Power” to calculate the mean value, variance, Cpk (biased process capability), R&R (Repeatability and Reproducibility), etc. The statistics results show the performance of the developed RF load board and the one from the test center in Europe is compatible and can be released for mass production. From this research, design flow of RF loadboard, highly relies on simulation to guarantee the performance of RF loadboard instead of basing on experience and/or trial and error, has been built up
目次 Table of Contents
Contents
1 Introduction 09
1.1 Motivation. 09
1.2 Key components on RF loadboard 11
1.3 Function of DUT 12
1.4 Fractional-N synthesizer 15
1.5 The Fraction-N Schematic of the DUT (Device Under Test) 17
1.6 The VCO Tank 21
1.7 The Loop Filter 22
1.8 The Balun 26
1.9 The Balun Used in Locally Developed Loadboard 29
1.10 The PCB 33
1.10.1 The PCB Layout 34
1.10.2 The Trace 37
1.10.3 The Via. 38
1.10.4 The Cable 40
1.10.5 The Relay 41
2 Development fo Implementation 46
2.1 The Experiment. 46
2.1.1 The PCB Stack Up 47
2.1.2 The Micro Strip Line Comparison 48
2.2 The Locally Developed RF PCB 58
2.3 The Design Flow of Locally Developed RF PCB 60
2.4 The Fine Tune Process and The Equipment List for RF PCB 62
2.4.1 Tx_L Balun 63
2.4.2 Transmitter High Band (Tx_H) 67
2.4.3 Rx_GSM US 850 MHz (Rx_GSM US 850) 71
2.4.4 Rx_GSM 900 MHz 75
2.4.5 Rx_DCS 1800 MHz Balun 78
2.4.6 Rx_PCS 1900MHz MHz Balun 81
3 Result Comparison and Discussion 84
3.1 Result for 2nd Correlation 90
3.2 Explanation for % R&R over 30 91
3.2.1 Discussion for High %R&R of Xout_out_Volt 91
3.2.2 Discussion for High %R&R of TXPCS_Vt_Main (Tn641) 95
3.2.3 Discussion for High %R&R of RXGSMUS_Gmid 100
3.2.4 Discussion for High %R&R of TXDCS_Isolation 102
3.2.5 Discussion for High %R&R of AM_AC_Inl_Pos 106
3.2.6 Discussion for High %R&R of RXDCS_MisG_Gmax 108
3.3 Explanation for % R&R Values from 30 down to 10 110
3.3.1 Discussion for %R&R of TXGSM_Spur@268K 110
3.3.2 Discussion for %R&R of CVCO3_TX_PCS. 112
3.3.3 Discussion for %R&R AM Fc@460K 115
3.3.4 Discussion for %R&R of TXGSM_R_Im_Min 116
3.3.5 Discussion for %R&R of RXGSMUS_Gmin 118
3.3.6 Discussion for %R&R of TXGSM_Spur@134K 121
3.3.7 Discussion for R&R of TXDCS_Spur@400K 122
3.3.8 Discussion for %R&R of TXGSMUS_R_Im_Min 125
3.3.9 Discussion for %R&R of TXDCS_R_Im_Min 127
3.3.10 Discussion for R&R of RXGSMUS_IP3_Gmax 129
3.3.11 Discussion for R&R of TXPCS_R_Im_Min 132
3.3.12 Discussion for %R&R of RXGSMUS_CP1_Gmi 134
3.3.13 Discussion for %R&R of RXDCS_CP3_Gmax 136
3.3.14 Discussion for %R&R of TXGSMUS_Isolation 140
3.3.15 Discussion for %R&R of RXGSM_IP3_Gmax. 142
3.3.16 Discussion for %R&R of RXPCS_CP1_Gmin 145
3.3.17 Discussion for %R&R of RXDCS_IP3_Gmax 147
3.3.18 Discussion for %R&R of TXDCS_Spur@134K 151
3.3.19 Discussion for %R&R of RXDCS_Gmid 153
3.3.20 Discussion for %R&R of TXGSMUS_VGA_Max 155
3.3.21 Discussion for %R&R of CVCO3_TX_GSM 157
3.3.22 Discussion for %R&R of TXGSM_VGA_Max 158
3.3.23 Discussion for %R&R of RXDCS_Gmax 159
3.3.24 Discussion for %R&R of TXDCS_VGA_Max 161
3.3.25 Discussion for %R&R of AM_Gain_63vs16 162
3.3.26 Discussion for %R&R of TXPCS_VGA_Max 163
3.3.27 Discussion for %R&R of CVCO3_TX_DCS 165
4 Conclusion 167
4.1 summary 167
A Appendix 169
A.1 The Tester Configuration 169
A.2 Formulas Power Conversions 170
A.3 STATISTICAL TERMS. 171
A.4 IP3 Test Method 173
A.5 Frequency Setting in Each Band 174
A.6 Flow Chart of Test 175
A.7 Theory of Loop Filter 176
A.8 Actual Frequency Spectrum after FFT 180
References 188
參考文獻 References
References
[1] M. Stork and P. Kaspar, “Fractional phase-locked loop frequency synthesizer,” Signal, Circuit and System, SCS2003 International Symposium, vol. 1, 2003, pp 129-132.
[2] J. Eogers, C. Plett, and F. Dai, Integrated Circuit Design for high speed frequency synthesis, Norwood, MA: Artech House, 2006.
[3] M. Gupta and B. S. Song, “A 1.8 GHz Spur-Cancelled Fractional-N Frequency Synthesizer with LMS-Based DAC Gain Calibration,” IEEE J. Solid-State Circuits, vol. 41, pp. 2842-2851, Dec. 2006.
[4] S. Pamarti, L. Jansson, and I. Galton, “A wideband 2.4 GHz delta-sigma fractional-N PLL with 1-Mb/s in-loop modulation,” IEEE J. Solid-State Circuits, vol. 39, Issue 1, pp. 49–62, Jan. 2004.
[5] I. Novak, “Reducing simultaneous switching noise and EMI on ground/power planes by dissipative edge termination,” IEEE Trans. CPMT, vol. 22, no. 3, pp. 274-283, Aug. 1999.
[6] N. Bushyager, A. Obatoyinbo, L. J. Martin, and M. M. Tentzeris, “Design and optimization of 3-D compact stripline and microstrip Bluetooth/ WLAN balun architectures using the design of experiments technique,” IEEE Trans. Antennas and Propagation, vol 53, Issue 5, pp 1805-1812, May 2005.
[7] A. M. Pavio and A. Kikel, “A monolithic or hybrid broadband compensated balun,” in IEEE MTT-S Int. Microwave Symp. Dig., 1990, pp 483-486.
[8] J. S. Lim, U. H. Park, S. M. Oh, J. J. Koo, Y. C. Jeong, and D. Ahn, “A 800- to 3200-MHz Wideband CPW Balun Using Multistage Wilkinson Structure,” in IEEE MTT-S Int. Microwave Symp. Dig., 2006, pp 1141-1144.
[9] S. E. Melais, T. Weller, and M. J. Wilhelm, “A low-profile broadband strip-line balun,” in Proc. IEEE Antennas and Propagation Symp., vol. 3B, 2005, pp 369-372.
[10] K. Nishikawa, I. Toyoda, and T. Tokumitsu,“Compact and broadband three-dimensional MMIC balun,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 96-98, Jane 1999.
[11] W. I. Chang, D. Y. Jung, and C. S. Park, “A K-band LTCC SMD type balun using a multi-layer coupler insensitive to misalignment,”. IEEE Radio and Wireless Symp., 2006, pp 595-597.
[12] T. T. Hsu and C. N. Kuo, “Low power 8-GHz ultra-wideband active balun,” the 6th IEEE Topical Meeting on Si Monolithic ICs in RF Systems, 2006.
[13] T. H. Lee, The design of CMOS Radio Frequency Integrated Circuit, Cambridge University Press, 2004.
[14] E. P. Li, W. L. Yuan, J. Yi, L. W. Li, and M. I. Montrose, “Analysis on the effectiveness of the 20-H rule using numerical simulation technique Electromagnetic Compatibility,” 2002 IEEE International Symp. vol.1, 2002, pp 328-333.
[15] Z. Li, Q. Wang, and C. S. Shi, “Application of guard traces with vias in the RF PCB layout,” Electromagnetic Compatibility International Symp., 2002, pp 771-774.
[16] S. Maeda, T. Kashiwa, and I. Fukai, “Full wave analysis of propagation characteristics of a through hole using the finite-difference time-domain method,” IEEE Trans. Microwave Theory Tech., vol 39, Issue 12, pp 2154-2159, Dec. 1991.
[17] J. H. Kim, S. W. Han, and O. K. Kwon, “Analysis of via in multilayer printed circuit boards for high-speed digital systems,” EMAP 2001, pp 382-387, Nov. 2001.
[18] S. Lei, K. Young, D. Dreps, and J. Trewhella, “How detrimental could a via be,” Electrical Performance of Electronic Packaging. IEEE 13th Topical Meeting, 2004, pp 91-94.
[19] S. A. Bokhari, “Precision Delay Matching by Trace Length Control in Printed Circuit Boards,” CCECE ’06 Canadian Conf., 2006, pp 799-802.
[20] X. Wu, C. M. Lee, M. H. Pong, and Z. M. Qian, “A novel approach base on electric field analysis to reduce crosstalk problem on PCB,” IEEE Power Electronics Specialists Conf., Vol. 2, 1999, pp 845-849.
[21] M. K. Armstrong, “PCB design techniques for lowest-cost EMC compliance. 1,” IEEE J. Electronics &Communication Engineering, pp 185-194, Aug. 1999.
[22] M. K. Armstrong, “PCB design techniques for lowest-cost EMC compliance. 2,” IEEE J. Electronics &Communication Engineering, pp 218-226, Oct. 1999.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.195.162
論文開放下載的時間是 校外不公開

Your IP address is 18.118.195.162
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code