Responsive image
博碩士論文 etd-0717120-164625 詳細資訊
Title page for etd-0717120-164625
論文名稱
Title
使用六埠技術之自我注入鎖定雷達研究
Research on Self-Injection-Locked Radar Using Six-Port Technique
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-08-17
繳交日期
Date of Submission
2020-08-17
關鍵字
Keywords
生理訊號、自我注入鎖定雷達、頻率解調器、校正、六埠電路
vital sign, SIL radar, frequency demodulator, six-port, calibration
統計
Statistics
本論文已被瀏覽 5701 次,被下載 0
The thesis/dissertation has been browsed 5701 times, has been downloaded 0 times.
中文摘要
本論文提出以六埠電路取代傳統頻率鑑別器中混波器的功能,實現了一操作於2.4 GHz之非接觸式生理感測裝置,此解調架構具有低電路複雜度與高線性度的優勢。當其作為非同調頻率解調器使用時,先透過訊號處理的方式將功率檢測器的非線性及六埠電路的誤差所造成的影響進行校正;可透過電路中的相移器調整兩輸入埠之間的相位差,藉此使兩輸入埠具有特定之相位差。因此可藉由六埠電路中兩路輸出訊號經由處理後得出近似於另兩路輸出訊號的結果,令在解調時取其中兩路輸出訊號進行即可得知生理徵象資訊。降低了類比數位轉換器的使用數目,從而節省了系統成本。實驗部分首先利用訊號產生器驗證理論以及校正的準確性後,透過致動器的擺動使自我注入鎖定振盪器產生頻率調變訊號,並計算其頻率偏移與已知時間延遲所造成的相位變化,確認其結果與頻率解調出的相位變化為一致,最後再進行人體的生理徵象資訊測量。
Abstract
This thesis proposes to replace the function of the mixer in the traditional frequency discriminator with a six-port circuit to realize the non-contact vital sign sensing device operating at 2.4 GHz. This demodulation architecture has the advantages of low circuit complexity and high linearity. When it is used as a non-coherent frequency demodulator, first, the signal processing method to correct the power detector of nonlinearity and six port circuit error. And the phase difference between the two input ports can be adjusted by the phase shifter in the circuit, so that the two input ports have a specific phase difference. Therefore the two output signals in the six-port can be processed to obtain a result similar to the other two output signals, that the two output signals can be demodulated to obtain vital sign information. Reduced the number of analog to digital converters, thereby save the system costs.The experimental part first uses the signal generator to verify the accuracy of the theory and calibration. Through the swing of the actuator, the self-injected locked oscillator generates a frequency modulation signal. To calculate the phase shift caused by the frequency deviation and the known time delay. Confirm the result is consistent with the phase shift that calculated by the frequency demodulation. Finally, the vital sign information of the human body is measured.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 x
第一章 序論 1
1.1研究背景與動機..............................................................................................1
1.2文獻回顧..........................................................................................................3
1.2.1鎖相迴路 4
1.2.2微分器 4
1.2.3頻率鑑別器 5
1.3六埠電路..........................................................................................................5
1.3.1六埠應用 6
1.3.2校正方式...............................................................................................8
1.4章節規劃.........................................................................................................11
第二章 基於量測之六埠頻率解調電路校正.............................................................12
2.1六埠頻率解調器.............................................................................................12
2.2功率檢測器.....................................................................................................15
2.3頻率響應.........................................................................................................20
2.3.1直流偏移..............................................................................................20
2.3.2振幅不平衡..........................................................................................23
2.3.3相位偏移 24
2.4校正過程及驗證............................................................................................27
第三章 六埠轉四埠之解調技術 30
3.1實驗架構........................................................................................................30
3.1.1自我注入鎖定振盪器 32
3.2解調推導與分析............................................................................................34
3.3模擬與驗證....................................................................................................36
3.3.1模擬比對 36
3.3.2實際驗證 37
第四章 生理徵象感測實驗 41
4.1初始相位........................................................................................................41
4.2致動器量測....................................................................................................42
4.3生理資訊量測................................................................................................46
第五章 結論與未來展望 50
參考文獻 51
參考文獻 References
[1] NELLCOR. [online] Available :
http://www.foreverhealth.com.hk/product/nellcor%E6%89%8B%E6%8F%90%E5%BC%8F%E8%A1%80%E6%B0%A7%E5%84%80/
[2] APPLE. [online] Available :
https://support.apple.com/kb/SP778?viewlocale=zh_TW&locale=zh_TW
[3] R.J Doviak and D.S Zmic, “Doppler radar and weather observations”, New York:
Acadamic, 1993.
[4] J. Hatch, A. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 845–860, Mar. 2012.
[5] C. Gu, C. Li, J. Lin, J. Long, J. Huangfu, and L. Ran, “Instrument-based noncontact doppler radar vital sign detection system using heterodyne digital quadrature demodulation architecture,” IEEE Trans. Instrum. Meas., vol. 59, no. 6, pp. 1580–1588, Jun. 2010.
[6] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112–4120, Dec. 2010.
[7] J. C. Candy and O. J. Benjamin, “The structure of quantization noise from sigma-delta modulation,” IEEE Trans. Commun., vol. COM-29, pp. 1316–1323, Sep. 1981.
[8] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Single-antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3577–3587, Dec. 2011.
[9] F.-K. Wang, C.-H. Fang, T.-S. Horng, K.-C. Peng, J.-Y. Li, and C.-C. Chen, “Concurrent vital sign and position sensing of multiple individuals using self-injection-locked tags and injection-locked I/Q receivers with arctangent demodulation, “ IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4689–4699, Dec. 2013.
[10] P.-H. Wu, F.-H. Chung, P. W. Hsu, "A 5.8 GHz phase- and self-injection-locked CMOS radar sensor chip for vital sign detector miniaturization", IEEE MTT-S Int. Microw. Symp. Dig., pp. 1-3, May 2016.
[11] C. H. Tseng, L. T. Yu, J.K. Huang and C. L. Chang, “A wearable Self-Injection-Locked sensor with active integrated antenna and Differentiator-Based envelope detector for Vital-Sign detection from chest wall and wrist,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 5, pp. 2511-2521, May 2018.
[12] H. Gheidi and A. Banai, “An ultra-broadband direct demodulator for microwave FM receivers,“ IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 2131–2139, Aug. 2011.
[13] G. F. Engen, “The six-port reflectometer: An alternative network analyzer,” IEEE Trans. Microwave Theory Techn., vol. MTT-25, pp. 1075–1080, Dec. 1977.
[14] C. A. Hoer, “A network analyzer incorporating two six-ports,” IEEE Trans. Microwave Theory Techn., vol. MTT-25, pp. 1070–1074, Dec. 1977.
[15] J. Li, R. G. Bosisio, and K. Wu, ‘‘A six-port direct digital millimeter wave receiver,’’ in Proc. IEEE Nat. Telesyst. Conf., San Diego, CA, USA, May 1994, pp. 79–82.
[16] C. Gutierrez Miguelez, B. Huyart, E. Bergeault, and L. P. Jallet, “A new automobile radar based on the six-port phase/frequency discriminator,” IEEE Trans. Veh. Technol., vol. 49, no. 4, pp. 1416–1423, July 2000.
[17] A. Koelpin, G. Vinci, B. Laemmle, S. Lindner, F. Barbon, and R. Weigei, “Six-port technology for traffic safety,” IEEE Microw. Mag., vol. 13, no. 3, pp. 118–127, Apr. 2012.
[18] T. Yakabe, F. Xiao, K. Iwamoto, F. M. Ghannouchi, K. Fujii, and H. Yabe, “Six-port based wave-correlator with application to beam direction finding,” IEEE Trans. Instrum. Meas., vol. 50, no. 2, pp. 377–380, Apr. 2001
[19] B. A. Garcia, D. Kerneves, and B. Huyart, “Measurement of direction of arrival for radar application,” in Proc. European Microwave Conf. , Sep. 2002, pp. 1–4.
[20] B. Huyart, J.-J. Laurin, R. Bosisio, and D. Roscoe, “A directionfinding antenna system using an integrated six-port circuit,” IEEE Trans. Antennas Propagat., vol. 43, no. 12, pp. 1508–1512, Dec. 1995.
[21] N. Majer, J. Haring, and V. Wieser, “DOA estimation by six-port reflectometer array,” in Proc. IEEE Int. Radioelektronika Conf. ,¬¬¬ Apr. 2007, pp. 1–4.
[22] Z. Peng, L. Ran and C. Li, " A K -band portable FMCW radar with beamforming array for short-range localization and vital-Doppler targets discrimination ", IEEE Trans. Microw. Theory Techn., vol. 65, no. 9, pp. 3443-3452, Sep. 2017.
[23] C. Akyel, F. M. Ghannouchi, and M. Caron, “A new design for high-power six-port reflectometers using hybrid stripline/waveguide technology,” IEEE Trans. Instrum. Meas., vol. 43, no. 2, pp. 316–321, Apr. 1994.
[24] S. Bensmida, P. Poir, R. Negra, and F. M. Ghannouchi, “New time-domain voltage and current waveform measurement setup for power amplifier characterization and optimization,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 1, pp. 224–231, Jan. 2008.
[25] A. Koelpin, G. Vinci, B. Laemmle, D. Kissinger, and R. Weigei, “The six-port in modern society,” IEEE Microw. Mag., vol. 11, no. 7, pp. 35–43, Dec. 2010.
[26] J. Osth, Owais, M. Karlsson, A. Serban, and S. Gong, ‘‘Performance evaluation of six-port receivers with simplified interface to amplifier and filter,’’ in Proc. IEEE Int. Ultra-Wideband Conf., Bologna, Italy, Sep. 2011, pp. 190–194.
[27] S. Lindner, F. Barbon, G. Vinci, R. Weigel and A. Koelpin, "Initial calibration procedure of a six-port receiver system for complex data reception", Microwave Conference (EuMC) 2012 European, Oct. 2013, pp. 896-899.
[28] A.-O. Olopade, M. Helaoui, “Squircle-Based calibration algorithm for Six-Port radar,” IEEE Trans. Microwave Theory and Techn., vol. 67, no. 10, pp. 4023–4030, Oct. 2019.
[29] M. Fernandez-Guasti, “Classroom notes: Analytic geometry of some rectilinear figures,” Int. J. Math. Educ. Sci. Technol., vol. 23, no. 6, pp. 895–913, 1992
[30] A. Hasan and M. Helaoui, “Novel modeling and calibration approach for multi-port receivers mitigating system imperfections and hardware impairments,” IEEE Trans. Microwave Theory Techn., vol. 60, no. 8, pp. 2644–2653, Aug. 2012.
[31] G. Vinci, S. Lindner, F. Barbon, S. Mann, M. Hofmann, A. Duda, R. Weigei, and A. Koelpin, “Six-port radar sensor for remote respiration rate and heartbeat vital-sign monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2093–2100, May 2013.
[32] Wiki. [online] Available : https://en.wikipedia.org/wiki/Amplitude_modulation.
[33] Chegg Study. [online] Available:
https://www.chegg.com/homework-help/definitions/envelope-detection-4.
[34] Linear Technology, RF power detector LTC5532 Data Sheet, [online] Available: https://www.analog.com/media/en/technical-documentation/data-sheets/5532f.pdf.
[35] R. Adler, “A study of locking phenomena in oscillators,” in Proc of the IRE, vol. 34, no. 6, pp. 351-357, June 1946
[36] C.-J. Li, F.-K. Wang, T.-S. Horng, and K.-C. Peng, “A novel RF sensing circuit using injection locking and frequency demodulation for cognitive radio applications,” in 2009 IEEE MTT-S Int. Microwave Symp. Dig., pp. 77 1165–1168.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-08-17
校外 Off-campus:開放下載的時間 available 2025-08-17

您的 IP(校外) 位址是 13.59.236.219
現在時間是 2024-04-24
論文校外開放下載的時間是 2025-08-17

Your IP address is 13.59.236.219
The current date is 2024-04-24
This thesis will be available to you on 2025-08-17.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2025-08-17

QR Code