論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
導電黏土電極應用於織物摩擦起電器之研製 Fabrication of Fabric Triboelectric Generators using Conductive Clay Electrode |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
134 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2017-07-20 |
繳交日期 Date of Submission |
2017-08-16 |
關鍵字 Keywords |
摩擦起電器、織物、發電元件、穿戴式裝置、導電黏土 triboelectric generator, fabric, conductive clay, power device, wearable device |
||
統計 Statistics |
本論文已被瀏覽 5705 次,被下載 63 次 The thesis/dissertation has been browsed 5705 times, has been downloaded 63 times. |
中文摘要 |
摩擦起電器(Triboelectric generator, TEG)可藉由簡單的摩擦、按壓或彎折運動,將環境中的機械能轉換為電能,儲存於電容即可供應元件的作動,相較於可充電電池,更有利於穿戴式電子產品的應用。然而,目前摩擦起電器所使用的摩擦層材料大多是以高分子材料為主,電極材料則主要使用金屬與ITO薄膜,其無法承受高撓曲之變形,故本論文將開發創新性的導電黏土作為電極,並採用織物作為摩擦層,以實現低成本、高可撓性、高穩定性、高導電性,且面積大小為60 mm × 60 mm的摩擦起電器。 研究結果顯示鎵銦合金液態金屬與釉粉以4:1之比例混合所形成的導電黏土,除了具有優越的導電性外,更兼具極佳的塗佈性與成膜性。為了提升織物摩擦起電器的電氣輸出特性,藉由在摩擦層上製作微/奈米級結構,以增加接觸表面的摩擦特性,其中以尼龍摩擦層具有方形圖案陣列結構,且製作PVDF靜電紡絲奈米纖維於聚酯纖維摩擦層上,具有最佳的輸出性能,得到的最大輸出電壓與輸出電流分別為30.96 V與3.07 μA。評估負載電阻對輸出電壓與輸出電流的影響,並進一步得知當負載電阻為10 MΩ時,得到的最大功率為13.97 μW。 此外,經由耐久性與耐洗性的測試,證實本論文發展的織物摩擦起電器之性能極為穩定,並評估於實務應用中的價值。因織物摩擦起電器具有柔軟與舒適的特點,可整合至衣服、鞋子與長褲,以獲取運動過程中所產生的能量,故具有作為穿戴式電子裝置之潛力。將織物摩擦起電器縫合於衣服中,並以搖晃與拍打的方式作動,得到的平均輸出電壓約為16.78 V;當黏貼於鞋底時,可得到大於5 V之輸出電壓。此外,亦可將織物摩擦起電器與護膝、護肘及護腕搭配,並整合至褲子、袖子與手腕,藉由關節活動的過程獲取機械能,而得到的最大輸出電壓分別約為0.09 V、0.33 V與0.42 V。最後,藉由設計充電電路,已可實現點亮市售的LED燈泡。 |
Abstract |
Triboelectric generators (TEGs) can convert mechanical energy into electrical energy by friction, compression or bending actions. The electrode materials used in TEGs are mainly metal and ITO films, which can’t endure high deflection and deformation. As a result, this study will use innovative conductive clay as electrode materials, and fabric is used as flexible substrates to achieve TEGs with low cost, high stability and efficiency, and a size of 60 mm × 60 mm. The results reveal that conductive clay blended with Ga–In alloy/glaze powder at 80/20 wt% proportion, which not only has superior conductivity but also has excellent coatability and film forming ability. In order to enhance the electrical output characteristics of the fabric TEG, the micro/nanostructures will be fabricated on the friction interface. The fabric TEG has the best output performance when nylon layer with square array structures, and polyester layer with PVDF electrospinning nanofibers, the maximum output voltage and current are 30.96 V and 3.07 μA, respectively, and can deliver a peak output power of 13.97 μW under a loading resistance of 10 MΩ. Furthermore, the electric output of the fabric TEG showed good stability under durable and washable test. In practical applications, the fabric TEG can be integrated into shoes, clothes and trousers as a real wearable device. When it is stitched in the clothes, it could harvest energy from shaking and patting, and the average output voltage is ~16.78 V. The fabric TEG could also be integrated in a shoe to harvest energy from footsteps, which reaches more than 5 V. In addition, the fabric TEG could be integrated into the knee, elbow and wrist to harvest energy from the bending of joints, and generated the maximum output voltage of 0.09 V, 0.33 V and 0.42 V. Finally, this study has been successfully implemented to light up a commercial LED bulb. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 v 圖次 viii 表次 xvii 第一章 緒論 1 1.1 前言 1 1.2 靜電的形成方式 2 1.3 摩擦起電器簡介 3 1.3.1 摩擦起電器的基本原理 3 1.4 液態金屬簡介與其應用發展 5 1.5 研究動機與目的 9 1.6 論文架構 10 第二章 理論探討與文獻回顧 11 2.1 摩擦起電器的類型與原理 11 2.2 摩擦起電器理論研究 17 2.3 摩擦起電器材料的選擇 22 2.4 摩擦層的結構設計 29 2.5 摩擦起電器作為自供電感測器之應用 35 第三章 實驗設計與規劃 44 3.1 實驗程序規劃 44 3.1.1 調配導電黏土與特性測試 46 3.1.2 摩擦層微/奈米級結構的製作 47 3.1.3 織物摩擦起電器的製程與性能測試 49 3.1.4 織物摩擦起電器充電電路的設計與實務應用 52 3.2 實驗器材 54 第四章 結果與討論 59 4.1 導電黏土調配比例最佳化 59 4.1.1 導電黏土的特性 59 4.1.2 導電性之評估 66 4.1.3 塗佈性之評估 67 4.1.4 成膜性之評估 69 4.2 摩擦層之微/奈米級結構的形貌分析 72 4.3 織物摩擦起電器的組裝 78 4.4 織物摩擦起電器的性能測試 86 4.4.1 織物摩擦起電器的發電機制 86 4.4.2 電氣輸出特性之量測 88 4.4.3 可靠度之評估 99 4.4.4 織物摩擦起電器的實務應用 103 第五章 結論與未來展望 109 5.1 結論 109 5.2 未來展望 110 參考文獻 112 |
參考文獻 References |
1. Z. L. Wang, and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays”, Science, Vol. 312, pp. 242-246, 2006. 2. Z. L. Wang, “Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors”, ACS Nano, Vol. 7, No. 11, pp. 9533-9557, 2013. 3. F. R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, and Z. L. Wang, “Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films”, Nano Lett., Vol. 12, No. 6, pp. 3109-3114, 2012. 4. H. Li, and J. Liu, “Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-free heat exchangers”, Front. Energy, Vol. 5, No. 1, pp. 20-42, 2011. 5. Y. Deng, and J. Liu, “A liquid metal cooling system for the thermal management of high power LEDs”, Int. Commum. Heat Mass, Vol. 37, pp. 788-791, 2010. 6. Y. Gao, and J. Liu, “Gallium-based thermal interface material with high compliance and wettability”, Appl. Phys. A, Vol. 107, pp. 701-708, 2012. 7. A. Lenert, and E. N. Wang, “Optimization of nanofluid volumetric receivers for solar thermal energy conversion”, Solar Energy, Vol. 86, pp. 253-265, 2012. 8. H. Ge, and J. Liu, “Phase change effect of low melting point metal for an automatic cooling of USB flash memory”, Front. Energy, Vol. 6, No. 3, pp. 207-209, 2012. 9. W. Tang, T. Jiang, F. R. Fan, A. F. Yu, C. Zhang, X. Cao, and Z. L. Wang, “Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%”, Adv. Mater., Vol. 25, pp. 3718-3725, 2015. 10. S. Y. Yang, J. F. Shih, C. C. Chang, and C. R. Yang, “Development of high-flexible triboelectric generators using plastic metal as electrodes”, Appl. Phys. A, Vol. 123, No. 2, 2017. 11. G. Zhu, C. Pan, W. Guo, C. Y. Chen, Y. Zhou, R. Yu, and Z. L. Wang, “Triboelectric-generator-driven pulse electrodeposition for micropatterning”, Nano Lett., Vol. 12, No. 9, pp. 4960-4965, 2012. 12. S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, and Z. L. Wang, “Sliding-triboelectric nanogenerators based on in-plane charge separation mechanism”, Nano Lett., Vol. 13, pp. 2226-2233, 2013. 13. L. Lin, S. Wang, Y. Xie, Q. Jing, S. Niu, Y. Hu, and Z. L. Wang, “Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy”, Nano Lett., Vol. 13, No. 6, pp. 2916-2923, 2013. 14. Y. Yang, H. Zhang, Z. H. Lin, Y. S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, C. Hu, and Z. L. Wang, “Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system”, ACS Nano, Vol. 7, No. 10, pp. 9213-9222, 2013. 15. Y. Yang, H. Zhang, J. Chen, Q. Jing, Y. S. Zhou, X. Wen, and Z. L. Wang, “Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system”, ACS Nano, Vol. 7, No. 8, pp. 7342-7351, 2013. 16. S. Wang, Y. Xie, S. Niu, L. Lin, and Z. L. Wang, “Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes”, Adv. Mater., Vol. 26, pp. 2818-2824, 2014. 17. S. Niu, S. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. Hu, and Z. L. Wang, “Theoretical study of contact-mode triboelectric nanogenerators as an effective power source”, Energy Environ. Sci., Vol. 6, pp. 3576-3583, 2013. 18. S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou, Y. Hu, and Z. L. Wang, “Theory of sliding-mode triboelectric nanogenerators”, Adv. Mater., Vol. 25, pp. 6184-6193, 2013. 19. S. Niu, S. Wang, Y. Liu, Y. S. Zhou, L. Lin, Y. Hu, K. C. Pradel, and Z. L. Wang, “A theoretical study of grating structured triboelectric nanogenerators”, Energy Environ. Sci., Vol. 7, pp. 2339-2349, 2014. 20. S. Niu, and Z. L. Wang, “Theoretical systems of triboelectric nanogenerators”, Nano Energy, Vol. 14, pp. 161-192, 2015. 21. D. K. Davies, “Charge Generation on Dielectric Surfaces”, J. Phys. D: Appl. Phys., Vol. 2, pp. 1533-1537, 1969. 22. F. R. Fan, Z. Q. Tian, and Z. L. Wang, “Flexible triboelectric generator!”, Nano Energy, Vol. 1, No. 2, pp. 328-334, 2012. 23. G. Zhu, P. Bai, J. Chen, and Z. L. Wang, “Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics”, Nano Energy, Vol. 2, pp. 688-692, 2013. 24. J. Sun, W. Li, G. Liu, W. Li, and M. Chen, “Triboelectric nanogenerator based on biocompatible polymer materials”, J. Phys. Chem. C, Vol. 119, pp. 9061-9068, 2015. 25. G. Zhu, Z. H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, and Z. L. Wang, “Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator”, Nano Lett., Vol. 13, No. 2, pp. 847-853, 2013. 26. Y. H. Ko, S. H. Lee, J. W. Leem, and J. S. Yu, “High transparency and triboelectric charge generation properties of nano-patterned PDMS”, RSC Adv., Vol. 4, pp. 10216-10220, 2014. 27. W. Li, J. Sun, and M. Chen, “Triboelectric nanogenerator using nano-Ag ink as electrode material”, Nano Energy, Vol. 3, pp. 95-101, 2014. 28. S. Kim, M. K. Gupta, K. Y. Lee, A. Sohn, T. Y. Kim, K. S. Shin, D. Kim, S. K. Kim, K. H. Lee, H. J. Shin, D. W. Kim, and S. W. Kim, “Transparent flexible graphene triboelectric nanogenerators”, Adv. Mater., Vol. 26, No. 23, pp. 3918-3925, 2014. 29. H. Chu, H. Jang, Y. Lee, Y. Chae, and J. H. Ahn, “Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics”, Nano Energy, Vol. 27, pp. 298-305, 2016. 30. H. Zhang, Y. Yang, T. C. Hou, Y. Su, C. Hu, and Z. L. Wang, “Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors”, Nano Energy, Vol. 2, pp. 1019-1024, 2013. 31. G. Cheng, Z. H. Lin, L. Lin, Z. L. Du, and Z. L. Wang, “Pulsed nanogenerator with huge instantaneous output power density”, ACS Nano, Vol. 7, No. 8, pp. 7383-7391, 2013. 32. L. Zheng, Z. H. Lin, G. Cheng, W. Wu, X. Wen, S. Lee, and Z. L. Wang, “Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy”, Nano Energy, Vol. 9, pp. 291-300, 2014. 33. G. Wang, Y. Xin, H. Xuan, R. Liun, X. Chen, and L. Cheng, “Hybrid nanogenerators based on triboelectrification of a dielectric composite made of lead-free ZnSnO3 nanocubes”, Nano Energy, Vol. 18, pp. 28-36, 2015. 34. S. Wang, Y. Xie, S. Niu, L. Lin, C. Liu, Y. S. Zhou, and Z. L. Wang, “Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding”, Adv. Mater., Vol. 26, pp. 6720-6728, 2014. 35. S. H. Shin, Y. H. Kwon, Y. H. Kim, J. Y. Jung, M. H. Lee, and J. Nah, “Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators”, ACS Nano, Vol. 9, No. 4, pp. 4621-4627, 2015. 36. Z. Li, J. Chen, J. Yang, Y. Su, X. Fan, Y. Wu, C. Yu, and Z. L. Wang, “β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation”, Energy Environ. Sci., Vol. 8, pp. 887-896, 2015. 37. G. Zhu, W. Q. Yang, T. Zhang, Q. Jing, J. Chen, Y. S. Zhou, P. Bai, and Z. L. Wang, “Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification”, Nano Lett., Vol. 14, pp. 3208-3213, 2014. 38. Y. S. Zhou, G. Zhu, S. Niu, Y. Liu, P. Bai, Q. Jing, and Z. L. Wang, “Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification”, Adv. Mater., Vol. 26, pp. 1719-1724, 2014. 39. J. Yang, J. Chen, Y. Liu, W. Yang, Y. Su, and Z. L. Wang, “Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing”, ACS Nano, Vol. 8, No. 3, pp. 2649-2657, 2014. 40. J. Chen, G. Zhu, J. Yang, Q. Jing, P. Bai, W. Yang, X. Qi, Y. Su, and Z. L. Wang, “Personalized keystroke dynamics for self-powered human-machine interfacing”, ACS Nano, Vol. 9, No. 1, pp. 105-116, 2015. 41. J. Yang, J. Chen, Y. Su, Q. Jing, Z. Li, F. Yi, X. Wen, Z. Wang, and Z. L. Wang, “Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition”, Adv. Mater., Vol. 27, pp. 1316-1326, 2015. 42. W. Seung, M. K. Gupta, K. Y. Lee, K. S. Shin, J. H. Lee, T. Y. Kim, S. Kim, J. Lin, J. H. Kim, and S. W. Kim, “Nanopatterned textile-based wearable triboelectric nanogenerator”, ACS Nano, Vol. 9, No. 4, 2015. 43. D. Li, and Y. Xia, “Electrospinning of nanofibers: reinventing the wheel?”, Adv. Mater., Vol. 16, No. 14, pp. 1151-1170, 2004. 44. L. R. White, “On deviations from Young's equation”, J. Chem. Soc., Faraday Transactions 1, Vol. 73, pp. 390-398, 1977. 45. M. D. Dickey, “Emerging applications of liquid metals featuring surface oxides”, ACS Appl. Mater. Interfaces, Vol. 6, pp. 18369-18379, 2014. 46. D. Zrnic, and D. S. Swatik, “On the resistivity and surface tension of the eutectic alloy of gallium and indium”, J. Less-Common Met., Vol. 18, pp. 67-68, 1969. 47. Y. Yang, H. Zhang, S. Lee, D. Kim, W. Hwang, and Z. L. Wang, “Hybrid energy cell for degradation of methyl orange by self-powered electrocatalytic oxidation”, Nano Lett., Vol. 13, pp. 803-808, 2013. 48. T. C. Hou, Y. Yang, H. Zhang, J. Chen, L. J. Chen, and Z. L. Wang, “Triboelectric nanogenerator built inside shoe insole for harvesting walking energy”, Nano Energy, Vol. 2, No. 5, pp. 856-862, 2013. 49. T. R. Kuphaldt, “Lessons in electric circuits”, Design Science License, Vol. 1, pp. 439-459, 2006. 50. P. Ashford, “Unwanted currents can damage electronic equipment”, Avionics News, pp. 36-39, 2010. 51. S. C. B. Mannsfeld, B. C-K. Tee, R. M. Stoltenberg, C. V. H-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers”, Nature Materials, Vol. 9, pp. 859-864, 2010. 52. A. F. Diaza, and R. M. Felix-Navarro, “A semi-quantitative tribo-electric series for polymeric materials:the influence of chemical structure and properties”, J. Electrostatics, Vol. 62, pp. 277-290, 2004. 53. K. Robinson, “Static beat | unwinding roll tribocharging”, Paper, Film & Foil Converter, 2012. 54. J. Fang, X. Wang, and T. Lin, “Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes”, J. Mater. Chem., Vol. 21, pp. 11088-11091, 2011. 55. S. Wang, L. Lin, and Z. L. Wang, “Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics”, Nano Lett., Vol. 12, No. 12, pp. 6339-6346, Dec 12, 2012. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |