論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2027-08-11
校外 Off-campus:開放下載的時間 available 2027-08-11
論文名稱 Title |
基於低取樣率平面近場量測之天線缺陷偵測 Antenna Defect Detection Based on Planar Near Field Measurements with a Reduced Sampling Rate |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
68 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2022-07-28 |
繳交日期 Date of Submission |
2022-08-11 |
關鍵字 Keywords |
毫米波天線、平面近場量測、複數近場、取樣點減少、缺陷偵測 mmWave antenna, Planar Near Field, Complex near field, Sampling reduction, Defect detection |
||
統計 Statistics |
本論文已被瀏覽 159 次,被下載 0 次 The thesis/dissertation has been browsed 159 times, has been downloaded 0 times. |
中文摘要 |
本論文考慮低取樣率的平面近場量測,依據複數近場量測值進行貼片天線之缺陷偵測。毫米波頻段的應用逐漸在5G中佔有重要地位,由於毫米波的天線模組採用天線封裝(Antenna in package,AiP)的技術,使得天線在進行測試的時候,需要使用空中傳輸(Over The Air,OTA)的測試方式,量測天線遠場輻射場型,藉此判斷天線是否有缺陷。由於高頻段有波長短的特性,在遠場量測時,往往需要較遠的距離,因此近年來不少文獻提出以近場量測數值轉換至遠場的方式,來節省量測所需空間。然而,近場至遠場的轉換需要額外的計算複雜度且會造成些許誤差,若可直接由近場量測數值檢測天線模組是否有缺陷,即可避免掉轉換式所帶來的一些問題。因此本論文首先透過近場掃描的複數電場數值,提出三種根據振幅或相位之缺陷偵測演算法,並比較其效能,經過效能模擬得知,複數電場的相位能提供較靈活和較簡易的缺陷偵測設計。然而,近場量測時,若需要掃描所有的取樣點,必定相當的耗時,且不適用於量產產品的檢測,因此,我們根據電場相位的缺陷偵測演算法,進一步研究如何降低取樣點,更明確來說,透過比較良品與各個缺陷之間的相位差比較,尋找與良品有較大相位差的位置,紀錄為近場量測的取樣位置,即可得到節省取樣點的數量。最後,我們根據降低取樣率的取樣位置,再次設計缺陷偵測演算法。根據模擬結果,可看出我們僅需保留25.18%的取樣點,即可擁有與完整取樣點幾乎相同的效能,若運用在實際的測量上,將可大幅節省測量的時間。 |
Abstract |
This thesis considers planar near-field measurement with low sampling rate, and propose defect detections of patch antenna based on the complex-valued near-field measurements. The applications of the mmWave spectrum plays more and more important roles in 5G. Because the mmWave antenna module adopt the “Antenna-in-Package” technology, it requires to the Over-the-Air (OTA) test to validate the mmWave antenna. The antenna defect can be detected through the radiation pattern of the far-filed measurement, which demands a large measuring distance because of the short wavelength of mmWave signals. With this regard, some researches adopt transformation to the far field pattern from the near field measurement to reduce the measuring space. However, the method requires additional computation burden and leads to some numerical errors. If one may detect the antenna defects directly based on the near field measurements, those drawbacks caused by near-far transformation can be avoided. In this thesis, we proposed three defect detection algorithms based on the amplitudes or phases of the near filed measurements, and then compare the corresponding performance. It shows through numerical simulations that the phases of the near filed measurements provide more flexible and simpler design of defect detection. Nevertheless, it is time-consuming if we scan all the sampling points in the near field measurements, which is not suitable for mass production. Thus, we further investigate the reduction of sampling points for the defect detection based on the phase of the electrical field. Specifically, we look for sampling positions by comparing the phase difference between a perfect antenna module and all the defected antenna modules. The required amount of the sampling points can be greatly reduced by choosing the positions with large phase difference. Through the numerical simulations, it shows that wen simply need to keep 25.18% sampling points with comparable detection performance. We believe the algorithm is helpful to reduce measuring time in practical applications. |
目次 Table of Contents |
目錄 論文審定書 i 致謝 ii 中文摘要 iii ABSTRACT iv 目錄 vi 圖次 viii 表次 xi 第一章 緒論 1 第二章 背景知識 3 2.1 OTA天線測試 3 2.2 場型區域定義 4 2.3 近場量測方式 6 2.4 近場複數組成 8 第三章 待測天線模型 9 3.1 HFSS之天線設計 9 3.1.1 完美模型 9 3.1.2 缺陷模型 9 3.2 天線模型近場資料 12 3.2.1 完美模型 12 3.2.2 缺陷模型 13 第四章 近場缺陷偵測演算法 23 4.1完整取樣點缺陷偵測演算法 23 4.1.1振幅 23 4.1.2量化相位差 27 4.1.3相位差 34 4.2減少取樣點缺陷偵測演算法 38 第五章 模擬結果 43 5.1 基本設定 43 5.2 完整近場掃描缺陷偵測 45 5.2.1振幅 45 5.2.2量化相位差 46 5.2.3相位差 47 5.2.4效能比較 48 5.3 降低取樣點缺陷偵測 49 第六章 結論 54 參考文獻 55 |
參考文獻 References |
參考文獻 [1] Chu, Chia-Ching, et al. "Low loss Interconnection Solutions of Chip-to-Antenna for Millimeter-Wave Antenna-in-Package Application." 2020 15th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). IEEE, 2020. [2] Y. Zhang and J. Mao, "An Overview of the Development of Antenna-in-Package Technology for Highly Integrated Wireless Devices," in Proceedings of the IEEE, vol. 107, no. 11, pp. 2265-2280, Nov. 2019, doi: 10.1109/JPROC.2019.2933267. [3] B. -S. Fang, K. -T. Chen, C. -C. Lai and J. -C. Cheng, "Millimeter Wave Antenna in Package (AiP) Measured in Far-Field by a Vertical Probe Station," 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC), 2018, pp. 519-523, doi: 10.1109/EPTC.2018.8654372. [4] D. Paris, W. Leach and E. Joy, "Basic theory of probe-compensated near-field measurements," in IEEE Transactions on Antennas and Propagation, vol. 26, no. 3, pp. 373-379, May 1978, doi: 10.1109/TAP.1978.1141855. [5] P. -J. Chiu, D. -C. Tsai and Z. -M. Tsai, "Fast near-field antenna measurement technique," 2015 European Microwave Conference (EuMC), 2015, pp. 594-597, doi: 10.1109/EuMC.2015.7345833. [6] M. E. Leinonen, N. Tervo, M. Jokinen, O. Kursu and A. Pärssinen, "5G mm-Wave Link Range Estimation Based on Over-the-Air Measured System EVM Performance," 2019 IEEE MTT-S International Microwave Symposium (IMS), 2019, pp. 476-479, doi: 10.1109/MWSYM.2019.8701128. [7] A. Yaghjian, "An overview of near-field antenna measurements," in IEEE Transactions on Antennas and Propagation, vol. 34, no. 1, pp. 30-45, January 1986, doi: 10.1109/TAP.1986.1143727. [8] J. J. H. Wang, "An examination of the theory and practices of planar near-field measurement," in IEEE Transactions on Antennas and Propagation, vol. 36, no. 6, pp. 746-753, June 1988, doi: 10.1109/8.1176. [9] Ronald C. Wittmann, Carl F. Stubenrauch, Michael H. Francis, "Using Truncated Data Sets in Spherical-Scanning Antenna Measurements", International Journal of Antennas and Propagation, vol. 2012, Article ID 979846, 6 pages, 2012. https://doi.org/10.1155/2012/979846 [10] Y. Rahmat-Samii, L. I. Williams and R. G. Yaccarino, "The UCLA bi-polar planar-near-field antenna-measurement and diagnostics range," in IEEE Antennas and Propagation Magazine, vol. 37, no. 6, pp. 16-35, Dec. 1995, doi: 10.1109/74.482029. [11] M. S. Gatti and Y. Rahmat-Samii, "FFT applications to plane-polar near-field antenna measurements," in IEEE Transactions on Antennas and Propagation, vol. 36, no. 6, pp. 781-791, June 1988, doi: 10.1109/8.1180. [12] Y. Rahmat-Samii and J. M. Kovitz, "Antenna measurements through planar near field apparatus: An educational paradigm linking electromagnetic theory, sampling techniques, and FFT," 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), 2017, pp. 1-4, doi: 10.23919/URSIGASS.2017.8105228. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2027-08-11 校外 Off-campus:開放下載的時間 available 2027-08-11 您的 IP(校外) 位址是 216.73.216.69 現在時間是 2025-05-29 論文校外開放下載的時間是 2027-08-11 Your IP address is 216.73.216.69 The current date is 2025-05-29 This thesis will be available to you on 2027-08-11. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2027-08-11 |
QR Code |