Responsive image
博碩士論文 etd-0710120-161324 詳細資訊
Title page for etd-0710120-161324
論文名稱
Title
基於自我注入鎖定雷達之水管洩漏偵測
Pipe Leakage Detection by Using a Self-Injection-Locked Radar
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-07-21
繳交日期
Date of Submission
2020-08-10
關鍵字
Keywords
流固耦合、都普勒位移、管線洩漏、自我注入鎖定雷達、管線破裂模擬
pipeline leakage, self-injection locked (SIL) radar, fluid-structure interaction (FSI), simulation of broken pipeline, doppler effect
統計
Statistics
本論文已被瀏覽 5756 次,被下載 0
The thesis/dissertation has been browsed 5756 times, has been downloaded 0 times.
中文摘要
 本篇論文是基於利用單次轉頻自我注入鎖定雷達來偵測地面下的水管是否破裂,此架構可克服傳統連續波雷達架構之窠臼,同時具有高靈敏度與高穿透性的特性。整體系統操作流程為將自我注入鎖定振盪器的輸出訊號藉由頻率轉換器將5.8 GHz降頻至0.915 GHz後由天線發射,由於管線破裂會產生低頻振動並造成都普勒位移,在接收都普勒資訊後,此回波訊號回傳至接收端,升頻至注入鎖定振盪器之自由振盪頻率並重新注入,使其操作在自我注入鎖定狀態。為了驗證管線破裂會造成都普勒位移的現象,本論文使用COMSOL模擬管線破裂與無破裂的條件,在基於流固耦合的理論下,來取得此兩種條件的區別。而在訊號處理分析的部分,本論文使用訊號雜訊比做為依據,藉由量測當下環境無破裂管線的訊號雜訊比做為判斷洩漏的閥值,最後進行量測並與閥值比較即可得知管線是否有破裂的現象。
Abstract
This thesis elaborates on the detection of underground pipe leakage based on single conversion self-injection locked radar, which is a system with high sensitivity and great penetrability, and it improves the defect of the traditional continuous-wave radar. The operating principle can describe as the following item: The first step is that 5.8 GHz output signal from the injection-locked oscillator will convert to 0.915 GHz through the frequency converter and radiated by the transmitter. Then, the transmission signal will influence by the lower frequency doppler information which is produced by the broken pipeline. Finally, the receiver will obtain the echo signal first and the frequency converter coverts it to 5.8 GHz so that the radar system can operate the self-injection-locked situation. Otherwise, we use COMSOL this software to simulate the normal and broken pipeline. Base on fluid-structure interaction theory, we can obtain the difference for above two status. On part of the signal processing and analysis, we employ signal-to-noise ratio as the reference of pipe leakage. It can determine the pipe leaks or not by setting the threshold which measures from the non-leak pipeline at the current environment.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
摘要 iii
Abstract v
目錄 vi
圖目錄 viii
表目錄 xi
第一章 序論 1
1.1 研究背景與方法 1
1.2 管線洩漏偵測技術 3
1.3 透地雷達感測洩漏文獻探討 11
1.4 論文架構 16
第二章 系統架構 17
2.1 自我注入鎖定理論介紹 17
2.1.1 注入模型與理論 17
2.1.2 自我注入鎖定理論 20
2.2 單次轉頻自我注入鎖定雷達系統 24
第三章 COMSOL軟體模擬 29
3.1 管路振動模式 29
3.2 軟體環境參數設置與模擬結果 31
第四章 實驗設計與量測 37
4.1 實驗環境設置 37
4.2 管線量測結果 40
4.2.1無破裂之管線量測結果 44
4.2.2 不同水平距離下之管線量測結果 45
4.2.3 不同管徑之管線量測結果 47
4.2.4 不同破裂孔直徑之管線量測結果 48
4.2.5 量測失敗範例 49
第五章 結論 53
參考文獻 54
參考文獻 References
[1] 呂崇德,台灣地區自來水漏水問題與對策之研究,國立台灣海洋大學研究所碩士論文,民國九十四年
[2] J. Li, L. Liu, Z. Zeng, and F. Liu, “Advanced signal processing for vital sign extraction with applications in UWB radar detection of trapped victims in complex environments,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 3, pp. 783–791, Mar. 2014.
[3] A. Cataldo et al., “Enhancement of leak detection in pipelines through time-domain reflectometry/ground penetrating radar measurements,” IET Sci. Meas. Technol., vol. 11, no. 6, pp. 696–702, Sep. 2017.
[4] H. Qin and X. Xie, “Design and test of an improved dipole antenna for detecting enclosure structure defects by cross-hole GPR,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 1, pp. 108–114, Jan. 2016.
[5] P. D. Gader, M. Mystkowski, and Y. Zhao, “Landmine detection with ground penetrating radar using hidden Markov models,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 6, pp. 1231–1244, Jun. 2001.
[6] U. Baroudi, A. A. Al-Roubaiey, and A. Devendiran, “Pipeline leak detection systems and data fusion : A survey,” IEEE Access, vol. 7, pp. 97426–97439, Jul. 2019.
[7] ARGCO, Inc., [Online]. Available: https://www.argco.com/
[8] Hydrostatics, WIKI, [Online]. Available: https://en.wikipedia.org/wiki/Hydrostatics
[9] 台灣西克股份有限公司, [Online]. Available: https://www.sick.com/tw/zf/
[10] RTTM method, WIKI, [Online]. Available: https://en.wikipedia.org/wiki/Leak_detection#RTTM_methods
[11] E. Odusina, J. Akingbola, and D. Mannel, “Software-Based Pipeline Leak Detection,” Ph.D. dissertation, Univ. Oklahoma, Oklahoma, U.S., May 2008.
[12] Continuous equation, WIKI, [Online]. Available: https://en.wikipedia.org/wiki/Continuity_equation
[13] OMRON, Inc., [Online]. Available: https://www.omron.com.tw/
[14] A. Predescu, M. Mocanu and C. Lupu, “Real time implementation of IoT structure for pumping stations in a water distribution system,” 2017 21st International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Oct. 2017, pp. 529-534.
[15] TDK, Inc., [Online]. Available: https://invensense.tdk.com/
[16] D. K. Shaeffer, “MEMS inertial sensors: A tutorial overview,” IEEE Communications Magazine, vol. 51, no. 4, pp. 100-109, Apr. 2013.
[17] M. Ismail, R. A. Dziyauddin and N. A. A. Salleh, “Performance evaluation of wireless accelerometer sensor for water pipeline leakage,” 2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), Langkawi, Oct. 2015, pp. 120-125.
[18] M. F. Ghazali, “Leak detection using instantaneous frequency analysis,” Ph.D. dissertation, Univ. Sheffield, Sheffield, U.K., Jul. 2012.
[19] J. Kang, Y. Park, J. Lee, S. Wang, and D. Eom, “Novel leakage detection by ensemble CNN-SVM and graph-based localization in water distribution systems,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 4279–4289, May 2018.
[20] S. Srirangarajan, M. Allen, A. Preis, M. Iqbal, H. B. Lim, and A. J. Whittle, “Wavelet-based burst event detection and localization in water distribution systems,” J. Signal Process. Syst., vol. 72, no. 1, pp. 1–16, Jul. 2013.
[21] Penetradar, Inc., [Online]. Available : http://penetradar.com/new/
[22] G. Van Dijck and M. M. Van Hulle, “Genetic algorithm for informative basis function selection from the wavelet packet decomposition with application to corrosion identification using acoustic emission,” Chemometrics Intell. Lab. Syst., vol. 107, no. 2, pp. 318–332, Jul. 2011.
[23] M. Kedadouche, M. Thomas, and A. Tahan, “A comparative study between empirical wavelet transforms and empirical mode decomposition methods: Application to bearing defect diagnosis,” Mech. Syst. Signal Process., vol. 81, pp. 88-107, Dec. 2016.
[24] Y. Gao, M.J. Brennan, P.F. Joseph, J.M. Muggleton, O. Hunaidi, “A model of the correlation function of leak noise in buried plastic pipes,” J. Sound Vib., vol. 277, no. 1, pp. 133–148, Oct. 2004.
[25] AP sensing, Inc., [Online]. Available: https://www.apsensing.com/
[26] H. Wu et al., “One-Dimensional CNN-Based Intelligent Recognition of Vibrations in Pipeline Monitoring With DAS,” J. Light. Techn., vol. 37, no. 17, pp. 4359-4366, Sept. 2019.
[27] J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett., vol. 21, no. 13, pp. 569–570, Jun. 1985.
[28] R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence-domain reflectometry: A new optical evaluation technique,” Opt. Lett.,vol. 12, pp. 158–160, Mar. 1987.
[29] Pulsed laser, WIKI, [Online]. Available: https://en.wikipedia.org/wiki/Pulsed_laser
[30] K. Johannessen and B. K. Drakeley, “Distributed acoustic sensing: A new way of listening to your well/reservoir,” SPE Intelligent Energy Int. Conf., Utrecht, The Netherlands, Mar. 2012.
[31] COLE Publishing, Inc., [Online]. Available: https://www.digdifferent.com/editorial/2018/05/proper-ground-penetrating-radar-surveying-techniques
[32] GSSI, Inc., [Online]. Available: https://www.geophysical.com/
[33] S. Demirci, E. Yigit, I.H. Eskidemir, and C. Ozdemir, “Ground penetrating radar imaging of water leaks from buried pipes based on back-projection method,” NDT&E Int., vol. 47, pp. 35–42, Apr. 2012.
[34] 許程翔,透地雷達對地下管線探查之應用研究,國立成功大學土木工程研究所碩士論文,民國九十二年
[35] M. Konstantinos, D. Dimitrios,F. George, et al. “Leak detection in plastic water supply pipes with a high signal-to-noise ratio accelerometer,” Meas. Control, no. 51, pp. 27–37, Mar. 2018.
[36] M. Bimpas, A. Amditis, N. Uzunoglu, “Detection of water leaks in supply pipes using continuous wave sensor operating at 2.45 GHz,” J. Appl. Geophy., no. 70, pp. 226–236, Mar. 2010.
[37] 蕭介勛,本地振盪源的注入鎖定與牽引現象研究,國立中山大學電機工程研究所碩士論文,民國九十七年
[38] C.-J. Li, F.-K. Wang, T.-S. Horng, and K.-C. Peng, “A novel RF sensing circuit using injection locking and frequency demodulation for cognitive radio applications,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 12, pp. 3143–3152, Dec. 2009.
[39] R. Adler, “A Study of Locking Phenomena in Oscillators,” in Proceedings of the IRE, vol. 34, no. 6, pp. 351-357, June 1946.
[40] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Cheng, “A novel vital sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112–4120, Dec. 2010.
[41] C. Li and J. Lin, "Random Body Movement Cancellation in Doppler Radar Vital Sign Detection," IEEE Trans. Microw. Theory Techn., vol. 56, no. 12, pp. 3143-3152, Dec. 2008.
[42] 傅聖嚴,管流引起之管壁振動與噪音分析,國立台灣海洋大學研究所碩士論文,民國一百年
[43] A. Tijsseling, “Fluid–structure interaction in liquid-filled pipe systems: a review,” J. Fluids Struct., vol.10, no. 2, pp. 109–146, Feb. 1996.
[44] Bernoulli’s principle, WIKI, [Online]. Available: https://en.wikipedia.org/wiki/Bernoulli%27s_principle
[45] Turbulence, WIKI, [Online]. Available: https://en.wikipedia.org/wiki/Turbulence
[46] 吉岩科技, [Online]. Available: http://www.guyan.url.tw/
[47] Hamming window, WIKI, [Online]. Available: https://en.wikipedia.org/wiki/Window_function
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code