博碩士論文 etd-0707118-233757 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 侯達維(Ta-Wei Hou) 電子郵件信箱 E-mail 資料不公開
畢業系所 資訊管理學系研究所(Information Management)
畢業學位 碩士(Master) 畢業時期 106學年第2學期
論文名稱(中) 投資者使用理財機器人意願之影響因素
論文名稱(英) Factors Affecting Investors’ Intention to use Robo-advisors
檔案
  • etd-0707118-233757.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    紙本論文:5 年後公開 (2023-08-08 公開)

    電子論文:使用者自訂權限:校內 5 年後、校外 5 年後公開

    論文語文/頁數 中文/89
    統計 本論文已被瀏覽 5510 次,被下載 0 次
    摘要(中) 近幾年來「理財機器人」(Robo-advisor)逐漸興起,它能讓投資者能以低廉的成本,得到財富管理或投資的建議。本研究主要目的是探討影響國內投資者使用理財機器人服務的影響因素。研究以「延伸型整合性科技接受理論」(Unified Theory of Acceptance and Use of Technology 2,UTAUT2)為基礎,從而驗證理論在解釋投資者使用理財機器人服務的影響因素之有效性與適用度。本研究以UTAUT2的原始問卷為基礎修訂成研究問卷,並透過網路問卷調查法,回收了517 份有效問卷,其主要的統計與分析方法為敘述性統計分析、信度分析、驗證性因素分析、多元回歸分析及路徑分析。
    研究結果發現,「績效期望」、「易用預期」、「社會影響」與「促進條件」四個預測變數對於預測投資者使用理財機器人服務之使用意圖具顯著的影響力;但「享樂動機」、「價格」與「習慣」則對使用意圖則都沒有顯著影響力。
    研究同時發現風險態度與理財機器人類型等調節變數會在預測變數與使用意圖間產生調節效果。本研究最後針依問卷統計分析結果,提出研究結論並據以提出建議供金融業者推廣理財機器人服務之參考。
    摘要(英) In recent years, "robo-advisor" have become popular worldwide. It enables investors to get investment advices or financial management with low cost. The main purpose of this study aims at exploring the factors affecting the investor’s intention to use robo-advisor in Taiwan. The study also attempts to validate the appropriateness of the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) within the context of the intention to use robo-advisor. A questionnaire was developed and modified based on UTAUT2 original scale. The questionnaire was distributed through an internet questionnaire website to collect 517 samples for quantitative analysis. The main statistical and analytical methods, including Descriptive Statistical Analysis, Reliability Analysis, Confirmatory Factor Analysis, Multiple Regressions Analysis and Path Analysis, were utilized to evaluate the collected data.
    The results of this study indicate that the four predictors relevant to this study (Performance Expectancy, Effort Expectancy, Social Influence, Facilitating Conditions) were significant and explained a significant amount of the variances in predicting investors’ behavioral intention to adopt robo-advisor. However, Hedonic Motivation, Price Value and Habit have no significant influence on behavioral intention.
    The results also reveal that risk attitude and different types of robo-advisors moderated the relationships between the independent variables and the dependent variable (Behavioral Intention). This study finally makes some suggestions to the financial sector for promoting robo-advisor in Taiwan.
    關鍵字(中)
  • 延伸型整合性科技接受理論
  • 理財機器人
  • 使用意圖
  • 關鍵字(英)
  • robo-advisor
  • behavioral intention
  • Unified Theory of Acceptance and Use of Technology 2 ( UTAUT2)
  • 論文目次 論文審定書 i
    摘要 ii
    Abstract iii
    目錄 iv
    圖目錄 vii
    表目錄 viii
    第一章、緒論 1
    1.1 研究背景 1
    1.2 研究動機與目的 3
    1.3 研究流程 3
    第二章、文獻探討 5
    2.1、理財機器人(Robo-Advisor) 5
    2.1.1 理財機器人的定義 5
    2.1.2 理財機器人的優缺點 5
    2.1.3 理財機器人的種類 6
    2.2 風險態度 7
    2.2.1 風險的定義 7
    2.2.2風險態度對理財行為的影響 7
    2.3 科技接受模型相關理論 8
    2.3.1 理性行動理論(Theory of Reasoned Action, TRA) 8
    2.3.2 計畫行為理論(Theory of Planned Behavior, TPB) 9
    2.3.3 科技接受模式(Technology Acceptance Model, TAM) 10
    2.3.4 創新擴散理論(Innovation Diffusion Theory, IDT) 11
    2.3.5 動機模式(Motivation Model , MM) 12
    2.3.6 社會認知理論(Social Cognitive theory, SCT) 12
    2.3.7 結合TAM與TPB模式(Combined-TAM-TPB) 12
    2.3.8 PC使用模式 (Model of PC Utilization, MPCU) 13
    2.3.9 整合性科技接受理論(Unified Theory of Acceptance and Use of Technology, UTAUT) 14
    2.3.10 延伸型整合性科技接受理論(UTAUT2) 17
    2.4 延伸型整合性科技接受理論(UTAUT2)之相關研究 18
    第三章、研究方法 21
    3.1 研究架構 21
    3.2 研究假說 22
    3.3 變數操作型定義 23
    3.4 研究對象 26
    3.5 問卷設計 26
    3.6 前測 27
    第四章、研究結果 32
    4.1 敘述性統計分析 32
    4.1.1 填答者資料 32
    4.1.2 研究變數 34
    4.2 信度分析 39
    4.3 KMO與Bartlett的球型檢定 42
    4.3 共同方法偏誤 42
    4.4 驗證性因素分析 43
    4.4.1收斂效度 46
    4.4.2區別效度 47
    4.5 多元迴歸分析 48
    4.6 路徑分析 52
    4.7 檢驗結果 52
    第五章、結論與建議 56
    5.1. 結論 56
    5.1.1 控制變數效果 56
    5.1.2 自變數效果 58
    5.1.3 調節變數效果 58
    5.2 研究貢獻 59
    5.2.1 學術方面 59
    5.2.2 實務方面 60
    5.3 研究限制 60
    5.4 未來研究方向建議 61
    第六章、參考文獻 63
    附錄一 問卷 71
    附錄二 各家業者提供理財機器人的服務內容與模式 78
    參考文獻 1. 黃良瑞, 林郁珊. (2016). 自動化投資理財顧問(Robo-Advisor)之發展。證券暨期貨月刊第三十四卷第十期.
    2. 谷湘儀, 洪志麟, 賴冠妤, 陳國瑞, 呂馥伊. (2016). 機器人投資顧問(Robo-Advisor)國外實務及相關法令與管理措施之研究. 中華民國證券投資信託暨顧問商業同業公會。
    3. 林心慧, 張雲豪. (2009). 以UTAUT為基礎之消費者電子折價劵使用行為之預測模式:直接與干擾效果. 中華管理評論國際學報第十二卷三期
    4. 周立軒. (2005). 部落格的使用者與使用行為之研究. 元智大學資訊傳播學系研究所碩士論文
    5. 邱奕宏. (2008). 網際網路使用者採用 3.5G 行動寬頻上網之研究. 國立交通大學管理學院碩士在職專班科技管理組碩士論文
    6. 吳靖東. (2009). 個別投資人風險偏好程度與股票交易行為:以模擬交易為例. 創新與管理第二期, 21-38。
    7. 簡正昌. (2015). 平板電腦使用行為之研究-UTAUT 模型之應用. 國立臺北大學企業管理學系碩士論文
    8. 黃茂雄, 王永心, 陳世智. (2015). 應用UTAUT2模式探討影響MOD服務採用之相關因素. 2015年第二十六屆國際資訊管理學術研討會
    9. 汪美香, 楊小嬌. (2015). 以UTAUT 2探討國中生理財機器人使用之研究. 南臺學報第40卷第4期
    10. 曾馨萱. (2015). 英雄聯盟玩家對遊戲接受度之研究 - 以UTAUT2模型為基礎. 國立高雄第一科技大學-資訊管理系企業電子化碩士班學位論文
    11. 王本正, 許富榕. (2016). 以延伸型整合性科技接受模式探討行動醫療App協助照護任務之接受度. 福祉科技與服務管理學刊 4(4), 2016
    12. 翁晨語, 黃惠萍.(2016). 以延伸整合型科技接受模式和數位生活型態探討LINE TV的使用行為. 2016年中華傳播學會年會論文
    13. 洪瓊梅. (2016). 行動支付促進因素影響消費者使用意圖之研究. 輔仁大學資訊管理學系碩士在職專班碩士論文
    14. 李巧琪. (2016). 以UTAUT 探討Instagram 社群購物行為之研究. 國立高雄應用科技大學企業管理系碩士論文
    15. 吳淑鶯, 陳瑞和. (2006). 計劃行為理論應用於網路書店購買行為之研究. 中華管理評論國際學報第九卷第四期
    16. 郭彥宏. (2016). 影響消費者對行動支付使用意圖之研究. 中國文化大學商學院國際企業管理研究所碩士論文
    17. 證券期貨局投信投顧組. (2017). 開放證券投資顧問事業從事自動化投資顧問服務(Robo-Advisor),在一定條件下可由電腦系統自動為客戶執行再平衡交易. 金融監督管理委員會
    18. 張道宜. (2017). 靠理財機器人真能穩賺不賠. 今周刊第1078期.
    19. 顏長川. (2017). 矽谷的新寵,華爾街的噩夢. 震旦月刊第548期
    20. 葉新. (2016). FinTech解密:理財機器人到底會如何發展. From https://goo.gl/yAauGb
    21. Ajzen I. (1985). From Intentions to Actions: A Theory of Planned Behavior, In J.Kuhl &J.Bechmann (Eds.), Action Control from Cognition to Behavior, 11-39.
    22. Ajzen, I. (1989). Attitude structure and behavior. In A. R. Pratkanis, S. J. Breckler, & A. G. Greenwald (Eds.), Attitude structure and function (pp. 241-274). Hillsdale, N.J.: L. Erlbaum Associates.
    23. Ajzen, I., & Fishbein, M. (2000). Attitudes and the attitude-behavior relation: Reasoned and automatic processes. European review of social psychology, 1-33.
    24. Alba, J. W., & Hutchinson, J. W. (1987).Dimensions of Consumer Expertise, Journal of Consumer Research, 13(4), 411-454.
    25. Alwan, A. A., Dwivedi, Y. K., & Williams, M. D. (2013).Conceptual Framework for Examining Adoption of SST by Jordanian Customers, Proceedings of the British Academy ofManagement Conference BAM, Liverpool, UK, 9-12.
    26. Bandura, A. (1988). Organizational Application of Social Cognitive Theory.澳大利亞管理學雜誌,13(2), 275-302.
    27. Bandura, A. (1989). Human Agency in Social Cognitive Theory. 美國心理學家,44, 1175-1184.
    28. Biddle, S. J., Pearson, N., Ross, G. M., & Braithwaite, R. (2010).Tracking of Sedentary Behaviors of Young People: A Systematic Review, Preventive Medicine, 51(5), 345-351.
    29. Boontarig, W., Chutimaskul, W., Chongsuphajaisiddhi, V., & Papasratorn, B.(2012).Factors Influencing the Thai Elderly Intention to Use Smartphone for E-Health Services, Humanities, Science and Engineering Research, 479-483.
    30. Brown, S. A., & Venkatesh, V. (2005).Model of Adoption of Technology in the Household: A Baseline Model Test and Extension Incorporating Household Life Cycle, MIS Quarterly, 29(4), 399-426.
    31. Bruner, G. C., & Kumar, A. (2005). Explaining consumer acceptance of handheld Internet devices. Journal of Business Research, 58(5), 553-558.
    32. Keller, C & Siegrist, M. (2005). Investing in stocks-The influence of financial risk attitude and values-related money and stock market attitudes. Journal of Economic Psychology 27 (2006) 285–303.
    33. Cassidy, B., Haywood, C. L., & Sim, G. (2013). Investigating the Extent to Which Children Use Mobile Phone Application Stores, Proceedings of the 27th International BCS Human Computer Interaction Conference (HCI 2013) Brunel University, London, UK, 9-13.
    34. Chau, P. Y . K., and Hui, K. L. (1998).Identifying Early Adopters of New IT Products: A Case of Windows 95, Information & Management, 33(5), 225-230.
    35. Chin, W. W. (1998).Issues and Opinion on Structural Equation Modeling, Management Information Systems Quarterly, 22(1), 7-16.
    36. Compeau, D. R. and Higgins C.A. (1995b). Computer Self-Efficacy: Development of a Measure and Initial Test, MIS Quarterly (19:2), 189-211.
    37. Darley, W. K., & Smith, R. E. (1995).Gender Differences in Information Processing Strategies: An Empirical Test of the Selectivity Model in Advertising Response, Journal of Advertising, 24(1), 41-56.
    38. Davis, F. D. (1989).Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology,MIS Quarterly, 13(3), 319-340.
    39. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992).Extrinsic and Intrinsic Motivation to Use Computers in the Workplace, Journal of Applied Social Psychology, 22(14), 1111-1132.
    40. Deaux, K., & Kite, M. (1987).Thinking about Gender, in Analyzing Gender: A Handbook of Social Science Research, B. B. Hess, and M. M. Ferree (eds.), Beverly Hills, CA: Sage Publications, 92-117.
    41. Diamantopoulos, A., & Siguaw, J.A. (2006). Formative versus reflective indicators in organizational measure development: a comparison and empirical illustration. British Journal of Management, 17(4), 263-282.
    42. Dodds, W. B., Monroe, K. B., & Grewal, D. (1991).Effects of Price, Brand, and Store Information on Buyers, Journal of Marketing Research, 28(3), 307-319.
    43. Drucker, P.F. (1954). The practice of management. NY: Harper and Row.
    44. El-Gayar, O., Moran, M., & Hawkes, M. (2011).Students’ Acceptance of Tablet PCs and Implications for Educational Institutions, Educational Technology & Society, 14(2), 58-70.
    45. F. Ewald. (1991),  Insurance and Risk , in G. Burchell, C. Gordon and P. Miller ( eds. ) The Foucault Effect: Studies in governmentality, London: Harvester Wheatsheaf
    46. Figner, B., & Weber, E.U. (2011). Determinants of risk taking: Who takes risks, when, and why? Current Direction in Psychological Science, in press.
    47. Fishbein, M., & Ajzen, I. (1975).Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research Reading, Cambridge, MA: Addison-Wesley.
    48. Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models With Unobservable Variables and Measurement Errors, Journal of Marketing Research, 28(Feb), 39-50.
    49. Hair, J. F., Black, B. B., Anderson, R., & Tatham, R. (2006).Multivariate Data Analysis(6th Ed.). Upper Saddle River, NJ: Pearson Education International.
    50. Harry Markowitz. The Journal of Finance, Vol. 7, No. 1. (Mar., 1952), pp. 77-91.
    51. Hall, D., & Mansfield, R. (1975).Relationships of Age and Seniority with Career Variables of Engineers and Scientists, Journal of Applied Psychology, 60(3), 201-210.
    52. Heiden, H. V. D. (2003). Factors influencing the usage ofwebsites: the case ofa generic portal in the Netherlands, Information & Management, 40(6), 541-549
    53. Henning, M., & Jardim, A. (1977).The Managerial Woman, Garden City, NY: Anchor Press.
    54. Kit, A. K. L., Ni, A. H., Bardri, E. N. F. B. M., & Yee, T. K. (2014).UTAUT 2 Influencing the Behavioral Intention to Adopt Mobile Applications, retrievedfrom: http://eprints.utar.edu.my/1277/1/AC-2014-1005389.pdf.
    55. Kline, R. B. (1998).Principles and Practice of Structural Equation Modeling, New York: the Guilford Press.
    56. Lazim, H. M., & Sasitharan (2014/1/7-9).The Smartphone Technology Acceptance AmongMalaysian Young Adults,The 4th International Conference on Technology and Operations Management, 562-570.
    57. Lee, H., Cho, H. J., Xu, W., & Fairhurst, A. (2010).The Influence of Consumer Traits and Demographics on Intention to Use Retail Self-Service Checkouts, Marketing Intelligence & Planning, 28(1), 46-58.
    58. Lee, M. K., Cheung, C. M., & Chen, Z. (2005). Acceptance of Internet-based learning medium: the role of extrinsic and intrinsic motivation. Information & management, 42(8), 1095-1104.
    59. Limayem, M., Hirt, S. G., & Cheung, C. M. K. (2007).How Habit Limits the Predictive Power of Intentions: The Case of IS Continuance, MIS Quarterly, 31(4), 705-737.
    60. MacCrimmon, K. R., & Wehrung, D. A. (1986). Taking risks: The management of uncertainty. New York: Free Press.
    61. Martins, C. I. (2013).Exploring Digital Music Online: User Acceptance and Adoption of Online Music Services, http://hdl.handle.net/10400.5/5910.
    62. Meola, A. (2016). A well-known investment company has entered the robo-advising game. From http://www.businessinsider.com/e-trade-launches-robo-advisor-2016-6
    63. Mekić, E., & Özlen, M. K. (2014). Acceptance of Smartphones by Users in BiHthrough Extended Technology Acceptance Model, European Researcher, 67(1-2), 136-149.
    64. Moore, G. C. & Benbasat, I. (1991).Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation,Information systems research, 2(3), 192-222.
    65. Muto, N. (2012). Basic Smartphone Workshop. Sault Community Career Centre, Retrieved from http://www.saultcareercentre.ca/wp-content/uploads/2012/09/PREVIEW-SMARTPHONE.pdf.
    66. Olsen, R. A. (1998). Behavioral finance and its implications for stock-price volatility. Financial analysts journal, 54(2), 10-18.
    67. Pinder, C.C. (1984) Work Motivation; Theory, Issues, and Applications. Foresman and Company, Glenview.
    68. Raman, A., & Don, Y. (2013).Preservice Teachers’ Acceptance of Learning Management Software: An Application of the UTAUT 2 Model, International Education Studies, 6(7), 157-164.
    69. Rogers, E. M. (1995). Diffusion of innovation (4th Ed.). New York: The Free Press
    70. Rotter, G. S., & Portugal, S. M. (1969).Group and Individual Effects in Problem Solving, Journal of Applied Psychology, 53(4), 338-341.
    71. Slade,E., Williams, M., & Dwivdei, Y. (2013/3/18-20).Extending UTAUT 2 To Explore Consumer Adoption Of Mobile Payments, UK Academy for Information Systems Conference Proceedings 2013, Paper 36.Retrievedfrom http://aisel.aisnet.org/ukais2013/36.
    72. Tao Zhou, Yaobin Lu , Bin Wang. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption . Computers in Human Behavior 26, 760–767.
    73. Taylor, S., &Todd, P. A. (1995).Assessing IT Usage: The Role of Prior Experience, MIS Quarterly, 19(4), 561-570.
    74. Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991).Personal Computing: Toward a Conceptual Model of Utilization, MIS Quarterly, 15(1), 124-143.
    75. Uffen, J., Kaemmerer, N., & Breitner, M. H. (2013). Personality Traits and Cognitive Determinants -An Empirical Investigation of the Use of Smartphone Security Measures, Journal of Information Security, 4, 203-212. http://dx.doi.org/10.4236/jis.2013.44023.
    76. Venkatesh, V., & Davis, F.D. (2000).A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies, Management Science, 46(2), 186-204.
    77. Venkatesh, V., & Morris, M. G. (2000).Why Don’t Men Ever Stop to Ask For Directions? Gender, Social Influence, and Their Role in Technology Acceptance and Usage Behavior,MIS Quarterly, 24(1), 115-139.
    78. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003).User Acceptance of Information Technology: Toward A Unified View, MIS Quarterly, 27(3), 425-478.
    79. Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178.
    80. Weber, E. U., & Hsee, C. K. (1998). Cross-cultural differences in risk perception but cross-cultural similarities in attitudes towards risk. Management Science, 44,1205–1217.
    81. Weber, E. U., & Milliman, R. (1997). Perceived risk attitudes:Relating risk perception to risky choice. Management Science, 43, 122–143.Making, 15, 263–290.
    82. Xu, X. (2014). Understanding Users’ Continued Use of Online Games: An Application of UTAUT2 in Social Network Games. In MMEDIA 2014, The Sixth International Conferences on Advances in Multimedia , 58-65.
    83. Yang, S. (2013).Understanding Undergraduate Students’ Adoption of Mobile Learning Model: A Perspective of the Extended UTAUT 2, Journal of Convergence Information Technology, 8(10), 969-979.
    84. Yi, Y.,Wu, Z.,& Tung, L. L. (2006).How Individual Differences Influence Technology Usage Behavior? Toward an Integrated Framework, Journal of Computer Information Systems, 46(2), 52-63
    85. Dwivedi, Y. K., Rana, N. P., Chen, H., and Williams, M. D. (2017). A Meta-analysis of the Unied Theory of Acceptance and Use of Technology (UTAUT). From https://hal.inria.fr/hal-01571726
    口試委員
  • 邱兆民 - 召集委員
  • 林怡伶 - 委員
  • 梁定澎 - 指導教授
  • 口試日期 2018-07-20 繳交日期 2018-08-08

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫