Responsive image
博碩士論文 etd-0705119-140241 詳細資訊
Title page for etd-0705119-140241
論文名稱
Title
為什麼微孔珊瑚是東沙環礁中最大的團塊狀珊瑚?
How come massive Porites reach the largest colony sizes at Dongsha Atoll?
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2019-07-16
繳交日期
Date of Submission
2019-08-05
關鍵字
Keywords
適應、生長、大尺寸珊瑚、微孔珊瑚
growth, adaptability, large colony size, Porites spp
統計
Statistics
本論文已被瀏覽 5895 次,被下載 85
The thesis/dissertation has been browsed 5895 times, has been downloaded 85 times.
中文摘要
微孔珊瑚是印度-太平洋島礁中常見的團塊形大珊瑚,在現在的研究中對於其機制的形成之驗證很少。我觀察到在東沙環礁的微孔珊瑚(Porites spp.)於海草床、塊礁棲所中,尺寸相較其他珊瑚大,但航道口及外環礁時此現象則消失。此外在不同棲所下微孔珊瑚尺寸亦有明顯差異。我將要回答的問題有兩個:(1)為什麼在海草床的微孔珊瑚比其他團塊形珊瑚來得大?提出六個假說:長得快、低死亡率、二次拓殖、最早到、數量多及競爭力強假說。目前結果支持微孔珊瑚生長速率快於其他種珊瑚,但卻沒辦法以生長速率完全解釋尺寸上的差異;以及支持二次拓殖假說;否定低死亡率、最早到、數量多和競爭力強假說。(2)為什麼微孔珊瑚在棲所間尺寸有差異?提出三個假說:長得快、穩定棲所和珊瑚間競爭壓力少假說,目前結果三個假說都被支持。結論為,海草床是高沉積物、溫度變化大的環境,但因微孔珊瑚本身特性有排沉積物能力,及較耐環境高溫特性,能使微孔珊瑚能以二次拓殖的生活方式在沙質底上存活,但其他珊瑚不行,加上生長素率略快於其他種珊瑚,所以能在海草床觀察到有大尺寸微孔珊瑚的現象。微孔珊瑚會在波浪干擾小以及競爭壓力小的棲所長得比較大,然而在波浪大且競爭壓力大的棲所則找不到大尺寸的微孔珊瑚。
Abstract
Massive poritids often reached very large colony sizes in many Pacific reefs. A few hypotheses have been proposed and tested in this on-going study. I observed that the massive Porites spp indeed reached largest colony sizes at Dongsha Atoll; within habitats, however, the same is true only in seagrass beds, patch reefs and channels, but not in fore reefs. I mentioned two questions: (1) how come massive Porites could reach large sizes in seagrass beds while the other massive corals could not? I proposed six hypotheses to test the mechanisms causing the difference of colony sizes between species, i.e., faster extension rates, lower mortality rates, earlier colonization, secondary colonization, high abundance, and superior competitivity. The results suggest that the extension-rate hypothesis contributed but could not fully explain the differences in colony sizes among species and the other hypothesis is secondary colonization. Reject lower mortality rates, earlier colonization, high abundance, and superior competitivity. (2) how come Porites differ in size among habitats? There are three hypotheses to test faster extension rates, stable habitats and lower competition pressure and they are supported currently. In summary, the environments of seagrass beds are high sediments and highly varied in temperature and Porites can remove the sediments and endure temperature so that exist in secondary colonization way, living on the sands. The other corals can’t live when removing from the sands. Moreover, the extension rates of Porites are faster than the others so we can observe the larger colony sizes of Porites in the seagrass beds. Also, larger Porites exist in the low distributions and less competition pressure environments, conversely not.
目次 Table of Contents
論文審定書……………………………………………………….………………………………………………………i
誌謝……………………………………………………………………………………………………………………….…ii
中文摘要…………………………………………………………………………….…………………………………..iii
英文摘要………………………………………..…………………………………………………...…………………iv
前言…………………………………………………………………………………………………………………………1
研究方法………………………………………………………………………………………………………..………10
實驗結果………………………………………………………………………………………………………..………13
討論………………………………………………………………………….……………………………………..…….17
參考文獻………………………………………………………………………………………………..……….…….28
參考文獻 References
王玉懷 (2009) 東沙環礁國家公園海洋環境長期調查研究(一)成果報告。海洋國家管理處,高雄市,71頁。
王玉懷 (2010) 東沙環礁國家公園海洋環境長期調查研究(二)成果報告。海洋國家管理處,高雄市,71頁。
戴昌鳳 (2014) 臺灣區域海洋學。國立臺灣大學出版中心,臺北市,99-105頁。
林義豪、蘇仕峯、陳佳琳 (2017) 東沙環礁波浪與水流之數值模擬。淡江大學水資源與環境工程學系碩士論文。

Adjeroud M (1997) Factors influencing spatial patterns on coral reefs around Moorea, French Polynesia. Mar Ecol Prog Ser 159:105–119.
Adjeroud M, Pratchett MS, Kospartov MC, Lejeusne C, Penin L (2007) Small-scale variability in the size structure of scleractinian corals around Moorea, French Polynesia: patterns across depths and locations. Hydrobiologia 589:117–126.
Babcock RC (1991) Comparative demography of three species of scleractinian corals using age- and size-dependent classifications. Ecol Monograph 61:225–244.
Baird A, Babcock R, Mundy C (2003) Habitat selection by larvae influences the depth distribution of six common coral species. Mar Ecol Prog Ser 252:289–293.
Baird A, Marshall P (2002) Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar Ecol Prog Ser 237:133–141.
Bak RPM, Meesters EH (1999) Population structure as a response of coral communities to global change. Amer Zool 39:56–65.
Banks SA, Harriott VJ (1996) Patterns of coral recruitment at the Gneering Shoals, southeast Queensland, Australia. Coral Reefs 15:225–230.
Benayahu Y, Loya Y (1981) Competition for space among coral-reef sessile organisms at Eilat, Red Sea. Bull Mar Sci 31(3):514–522.
Brown DP, Basch L, Barshis D, Forsman Z, Fenner D, Goldberg J (2009) American Samoa’s island of giants: massive Porites colonies at Ta’u island. Coral Reefs 28:735–735.
Carleton JH, Sammarco PW (1987) Effects of substratum irregularity on success of coral settlement: quantification by comparative geomorphological techniques. Bull Mar Sci 40 (1):85–98.
Connell JH (1973) Population ecology of reef-ruilding corals. In: Biology and Geology of Coral Reefs. Elsevier, p 205–245
Crabbe MJC (2009) Scleractinian coral population size structures and growth rates indicate coral resilience on the fringing reefs of North Jamaica. Mar Environ Res 67:189–198.
Dai C-F (1990) Interspecific competition in Taiwanese corals with special reference to interactions between alcyonaceans and scleractinians. Mar Ecol Prog Ser 60:291–297.
De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci USA 109:17995–17999.
Diaconis P, Efron B (1983) Computer-intensive methods in statistics. Sci Am 248(5):116–130.
Dollar SJ (1982) Wave stress and coral community structure in Hawaii. Coral Reefs 1:71–81.
Done TJ (1999) Coral community adaptability to environmental change at the scales of regions, reefs and reef zones. Amer Zool 39:66–79.
Done TJ (1982) Patterns in the distribution of coral communities across the central Great Barrier Reef. Coral Reefs 1:95–107.
Done TJ (1983) Coral zonation: its nature and significance. In perspectives on Coral reefs. (ed Barnes, D.). Brian Clouston, Manuka, pp. 107–147.
Done TJ (1987) Simulation of the effects of Acanthaster planci on the population structure of massive corals in the genus Porites: evidence of population resilience? Coral Reefs 6:75–90.
Done TJ, Potts DC (1992) Influences of habitat and natural disturbances on contributions of massive Porites corals to reef communities. Marine Biol 114:479–493.
Dubé CE, Mercière A, Vermeij MJA, Planes S (2017) Population structure of the hydrocoral Millepora platyphylla in habitats experiencing different flow regimes in Moorea, French Polynesia. PLoS ONE 12:e0173513.
Endean R, Cameron A, Fox H, Tilbury R, Gunthorpe L (1997) Massive corals are regularly spaced:pattern in a complex assemblage of corals. Mar Ecol Prog Ser 152:119–130.
Erftemeijer PLA, Riegl B, Hoeksema BW, Todd PA (2012) Environmental impacts of dredging and other sediment disturbances on corals: A review. Marine Poll Bull 64:1737–1765.
Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Marine Poll Bull 50:125–146.
Fabricius KE, Golbuu Y, Victor S (2007) Selective mortality in coastal reef organisms from an acute sedimentation event. Coral Reefs 26:69.
Glynn PW (1974) Rolling stones amongst the Scleractinia: mobile coralliths in the Gulf of Panama. Proc 2nd Int Coral Reef Symp 2:183–198
Goren M (1979) Succession of benthic community on artificial substratum at Elat (Red Sea). J Exp Mar Biol Ecol 38:19–40.
Hennige SJ, Burdett HL, Perna G, Tudhope AW, Kamenos NA (2017) The potential for coral reef establishment through free-living stabilization. Sci Rep 7:13322.
Highsmith RC (1980) Passive colonization and asexual colony multiplication in the massive coral Porites lutea Milne Edwards & Haime. J Exp Mar Biol Ecol 47:55–67.
Hoeksema BW, Hassell D, Meesters EHWG, van Duyl FC (2018) Wave-swept coralliths of Saba Bank, Dutch Caribbean. Mar Biodiv 48:2003–2016.
Horwitz R, Hoogenboom MO, Fine M (2017) Spatial competition dynamics between reef corals under ocean acidification. Sci Rep 7:40288.
Hudson JH, Shinn EA, Robbin DM (1982) Effects of offshore oil drilling on Philippine reef corals. Marine Poll Bull 32(4):890–908.
Hughes TP (1984) Population dynamics based on individual size rather than age: A General Model with a Reef Coral Example. Amer Nat 123:778–795.
Hughes TP, Ayre D, Connell J (1992) The evolutionary ecology of corals. Trends in Ecology & Evolution. 7:292-295.
Hughes TP, Connell JH (1987) Population dynamics based on size or age? A Reef-Coral Analysis. Amer Nat 129:818–829.
Hughes TP, Jackson JBC (1985) Population dynamics and life histories of Foliaceous Corals. Ecol Monograph 55:141–166.
Kenyon JC, Wilkinson CB, Aeby GS (2008) Community structure of hermatypic corals at Maro Reef in the northwestern Hawaiian Islands: A unique open atoll. Atoll Res Bull 558:1–22.
Kissling DL (1973) Circumrotatory growth form in Recent and Silurian corals. In In: Boardman RS, Cheetham AH, Oliver WA (eds) Animal colonies: development and function through time. Dowden, Hutchinson, and Ross, Stroudsburg, pp 43–58
Kuo K-M, Soong K (2010) Post-settlement survival of reef-coral juveniles in southern Taiwan. Zool Stud 49(6):724–734.
Lang J (1973) Interspecific aggression by scleractinian corals. 2. Why the race is not only to the swift. Bull Mar Sci 23:261–279.
Lenihan HS, Holbrook SJ, Schmitt RJ, Brooks AJ (2011) Influence of corallivory, competition, and habitat structure on coral community shifts. Ecology 92:1959–1971.
Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243.
Lough JM, Barnes DJ, Devereux MJ, Tobin BJ, Tobin S (1999) Variability in growth characteristics of massive Porites on the Great Barrier Reef. CRC reef research centre technical report No. 28, CRC Reef research centre, Townsville, Asustralia. 95pp.
Lough JM, Cantin NE (2014) Perspectives on massive coral growth rates in a changing ocean. Biol Bull 226:187–202.
Loya Y (1976) Effects of water turbidity and sedimentation on the community structure of Puerto Rican corals. Bull Mar Sci 26:450-466.
Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131.
Luthfi OM, Alviana PZ (2016) Distribution of Massive Porites at Reef Flat in Kondang Merak, Malang, Indonesia. Research Journal of Life Science 3:23–30.
Madin JS, Baird AH, Dornelas M, Connolly SR (2014) Mechanical vulnerability explains size-dependent mortality of reef corals. Ecol Lett 17:1008–1015.
Massel SR, Done TJ (1993) Effects of cyclone waves on massive coral assemblages on the Great Barrier Reef: meteorology, hydrodynamics and demography. Coral Reefs 12:153–166.
McClanahan TR, Obura D (1997) Sedimentation effects on shallow coral communities in Kenya. J Exp Mar Biol Ecol 209:103–122.
Mezaki T, Keshavmurthy S, Chen CA (2014) An old and massive colony of Pavona decussata is sexually active at high latitude (32°N) in Japan. Coral Reefs 33:97.
Miller MW, Weil E, Szmant AM (2000) Coral recruitment and juvenile mortality as structuring factors for reef benthic communities in Biscayne National Park, USA. Coral Reefs 19:115–123.
Penin L, Michonneau F, Baird A, Connolly S, Pratchett M, Kayal M, Adjeroud M (2010) Early post-settlement mortality and the structure of coral assemblages. Mar Ecol Prog Ser 408:55–64.
Peyrot-Clausade M (1977) Settlement of an artificial biota by coral reef cryptofauna. In Proc 3rd Int Coral Reef Symp. 101-103.
Porter JW, Woodley JD, Smith GJ, Nigel JE, and Battery JF (1981) Population trends among Jamaican reef corals. Nature 294: 249-250
Potts D, Done T, Isdale P, Fisk D (1985) Dominance of a coral community by the genus Porites (Scleractinia). Mar Ecol Prog Ser 23:79–84.
Roff G, Bejarano S, Bozec Y-M, Nugues M, Steneck RS, Mumby PJ (2014) Porites and the Phoenix effect: unprecedented recovery after a mass coral bleaching event at Rangiroa Atoll, French Polynesia. Mar Biol 161:1385–1393.
Rotjan RD, Lewis SM (2008) Impact of coral predators on tropical reefs. Mar Ecol Prog Ser 367: 73–91
Sheppard CRC (1980) Coral fauna of Diego Garcia lagoon, following harbour construction. Marine Poll Bull 11:227–230.
Soong K (1993) Colony size as a species character in massive reef corals. Coral Reefs 12:77–83.
Soong K, Chen CA, Chang J-C (1999) A very large poritid colony at Green Island, Taiwan. Coral Reefs 18:42–42.
Stafford-Smith MG (1993) Sediment-rejection efficiency of 22 species of Australian scleractinian corals. Marine Biology 115:229–243.
Vermeij MJA, Bak RPM (2000) Inferring demographic processes from population size structure in corals. Proceedings of the 9th International Coral Reef Symposium: 593–598.
Yeung K (2000) Changes in zooxanthellae density and chlorophyll-a concentration in corals Porites lobata after short-term sediment burial. In Directed Research Report, Environmental Science Programme. The Chinese University of Hong Kong.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code