Responsive image
博碩士論文 etd-0705119-135334 詳細資訊
Title page for etd-0705119-135334
論文名稱
Title
飼糧添加氫化大豆油和DHA 對點帶石斑魚(Epinephelus coioides)成長及 體內DHA蓄積之共同影響
Combined effects of dietary hydrogenated soybean oil and DHA on the growth and DHA deposition of the grouper (Epinephelus coioides)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-13
繳交日期
Date of Submission
2019-08-05
關鍵字
Keywords
高度不飽和脂肪酸、點帶石斑魚、置換實驗、DHA、氫化大豆油
growth performance, washing-out, lcPUFA, DHA, hydrogenated soybean oil
統計
Statistics
本論文已被瀏覽 5787 次,被下載 56
The thesis/dissertation has been browsed 5787 times, has been downloaded 56 times.
中文摘要
國立中山大學海洋科學系碩士論文摘要

飼糧添加氫化大豆油和DHA對點帶石斑魚(Epinephelus coioides)成長及體內DHA蓄積之共同影響

研究生:張為清
指導教授:陳宏遠博士

本研究探討飼糧添加氫化大豆油和DHA對石斑魚魚體成長表現和DHA蓄積的共同影響,研究共分為二階段,第一階段為八週成長試驗,第二階段為四週油脂置換(Washing-out)試驗。實驗為3×2複因子實驗,其中氫化大豆油取代大豆油比例為0,50及100%,DHA含量3.8g及10.8g/kg diet,前者低於點帶石斑最低DHA需求量,後者高於需求量。成長實驗結果顯示餵食含高量DHA各組石斑魚成長顯著(P<0.05)高於低量組,氫化大豆油添加則無顯著影響,飼料含氫化大豆油比例越高,石斑魚DHA蓄積顯著越高。經油脂置換實驗餵飼全魚油飼料後,在成長實驗中飼料含氫化大豆油比例越高,置換實驗成長表現越好,DHA蓄積顯著也越高。本研究結果顯示,氫化大豆油的使用促進點帶石斑魚魚體DHA蓄積和成長,且不受飼料DHA含量的影響,不管油脂置換前後,氫化大豆油比例越高,DHA蓄積越好;氫化大豆油添加不會影響石斑魚在成長試驗的成長,卻促進置換試驗的成長。


關鍵詞:點帶石斑魚、氫化大豆油、DHA、高度不飽和脂肪酸、置換實驗;
Abstract
Combined effects of dietary hydrogenated soybean oil and DHA on the growth and DHA deposition of the grouper (Epinephelus coioides)

Wei-Ching Chang

Advisor: Dr. Houng-Yung Chen
Department of Oceanography, National Sun Yat-sen University,
Kaohsiung 80424 Taiwan

Abstract
This study investigated the combined effects of dietary hydrogenated soybean oil (HSO) and DHA on the growth performance and DHA deposition of the grouper (Epinephelus coioides), An 8-week grow-out experiment, followed by a 4-wk washing-out experiment, was carried out. The grow-out experiment was of a 3×2 factorial design, in which soybean oil was replaced by HSO at 0, 50, or 100%, and DHA was supplemented at 3.8 (low) or 10.8 (high) g/kg which is lower or higher than the requirement level, respectively. Juvenile groupers with an initial weight of 64.3 g were stocked in flow-through tanks at 20 fish/tank. Each dietary treatment was randomly assigned to four replicate tanks (N=4). The fish were hand fed twice daily to apparent satiation. The results of the grow-out experiment showed that fish growth was significantly higher in the high DHA group than the low DHA group, and there was no difference among the HSO groups. Body DHA deposition was increased with increasing dietary HSO level. In the washing-out experiment, fish growth was increased with increasing dietary HSO level in the grow-out experiment. DHA deposition was increased with the increasing HSO level in the grow-out experiment. The present results show that dietary inclusion of HSO was associated with body DHA deposition and growth in the grower regardless of dietary DHA levels. While DHA deposition was increased with increasing dietary HSO levels for both experiments, HSO level did not affect the growth of the grouper in the grow-out experiment, but promoted fish growth in the washing-out experiment.



Key words: hydrogenated soybean oil, DHA, washing-out, growth performance, lcPUFA
目次 Table of Contents
目錄
章次頁數
論文審定書 i
謝辭 ii
中文摘要 iii
英文摘要 iv
目錄 vi
圖目錄 vii
表目錄 viii
文獻回顧 1
前言 14
材料與方法 16
結果 .35
討論 47
結論 52
參考文獻 53


圖目錄
圖次頁數
圖一、世界漁業漁獲量與水產養殖產量 10
圖二、魚粉及大豆粉價格 11
圖三、魚油及大豆油價格 12
圖四、脂肪酸合成之延長、去飽和與逆轉換路徑圖 13

表目錄
表次頁數
表一、實驗飼料組成 24
表二、實驗飼料之固定成分組成 25
表三、礦物鹽預拌劑之組成 26
表四、維生素預拌劑之組成 27
表五、飼料原料來源 28
表六、魚粉及大豆蛋白粉之化學成分組成 29
表七、實驗飼料之化學成分組成 30
表八、實驗用油脂之脂肪酸組成 31
表九、魚粉及大豆蛋白粉之脂肪酸組成 32
表十、實驗飼料之脂肪酸組成 33
表十一、初始魚體之魚片脂質主要脂肪酸組成 34
表十二、八週成長試驗後魚體之初重、末重、攝食量、飼料轉換率、增重百分率、比成長率、日成長比、肝體比 39
表十三、四週油脂置換試驗後魚體之初重、末重、攝食量、飼料轉換率、增重百分率、比成長率、日成長比、肝體比 40
表十四、八週成長試驗後之全魚體化學成分組成 41
表十五、四週油脂置換試驗後之全魚體化學成分組成 42
表十六、八週成長試驗後魚體之魚片脂質主要脂肪酸組成 43
表十七、四週油脂置換試驗後魚體之魚片脂質主要脂肪酸組成 44
表十八、八週成長試驗後魚體之肝臟脂質主要脂肪酸組成 45
表十九、四週油脂置換試驗後魚體之肝臟脂質主要脂肪酸組成 46
參考文獻 References
參考文獻

李愛杰,1998。水產動物營養與飼料學。台北市。水產出版社。
呂明毅,1998。石斑魚的繁養殖(三)。漁業週訊,627: 3。
吳豐成,2002。瑪拉巴石斑稚魚之必需脂肪酸營養及其對免疫反應之影響。國立中山大學海洋生物研究所博士論文。
林家平,2014。飼料維生素E和硒對點帶石斑魚高度不飽和脂肪酸組成的影響。國立中山大學海洋生物研究所碩士論文。
莊明達,2012,飼料α-次亞麻油酸與亞麻油酸比例對海鱺體脂肪 脂肪酸置換的影響。國立中山大學海洋生物研究所碩士論文。
趙日新,2012。飼料α-次亞麻油酸及亞麻油酸比例對點帶石斑魚合成或蓄積高度不飽和脂肪酸能力之影響。國立中山大學海洋生物研究所碩士論文。
食品藥物管理署,2016。食用氫化油之使用限制。中華民國衛生福利部。
世界衛生組織,2008。預防和控制非傳染病:實施全球戰略。(編號:EB122/9)。

AOAC (Association of Office Analytic Chemists) (1984). Official Methods of Analysis. 1018 pp. (Horwitz, W., editor). 13th edition. Washington, DC.
Bogut, I., Bukvic, Z., Steiner, Z., Milakovic, Z., & Stevic, I. (1998). Influence of linolenic fatty acid (18: 3W3) additive on European sheat fish (Silurus glanis) growth bred in cages. Zivocisna Vyroba-UZPI (Czech Republic).
Brenner, R. R., & Peluffo, R. O. (1966). Effect of saturated and unsaturated fatty acids on the desaturation in vitro of palmitic, stearic, oleic, linoleic, and linolenic acids. Journal of biological chemistry, 241(22), 5213-5219.
Castell, J., Sinnhuber, R., Wales, J., & Lee, D. J. (1972). Essential fatty acids in the diet of rainbow trout (Salmo gairdneri): growth, feed conversion and some gross deficiency symptoms. The Journal of nutrition, 102(1), 77-85.
Coutteau, P., Van Stappen, G., & Sorgeloos, P. (1996). A standard experimental diet for the study of fatty acid requirements of weaning and first ongrowing stages of the European sea bass Dicentrarchus labrax L.: comparison of extruded and extruded/coated diets. Archives of Animal Nutrition, 49(1), 49-59.
de Roos, N. M., Bots, M. L., & Katan, M. B. (2001). Replacement of dietary saturated fatty acids by trans fatty acids lowers serum HDL cholesterol and impairs endothelial function in healthy men and women. Arteriosclerosis, thrombosis, and vascular biology, 21(7), 1233-1237.
Deng, D., Ju, Z., Dominy, W., Conquest, L., Smiley, S., & Bechtel, P. (2014). Effect of replacing dietary menhaden oil with pollock or soybean oil on muscle fatty acid composition and growth performance of juvenile Pacific threadfin (Polydactylus sexfilis). Aquaculture, 422, 91-97.
FAO. (2012). The state of world fisheries and aquaculture 2012. Part 3 highlights of special studies 177-190.
FAO. (2018). The state of world fisheries and aquaculture 2018. Part 1 world review 2-83.
Folch, J., Lees, M., & Stanley, G. S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of biological chemistry, 226(1), 497-509.
Food, U., & Administration, D. (2015). The FDA takes step to remove artificial trans fats in processed foods. News release, June, 16.
Gatlin III, D. M., Barrows, F. T., Brown, P., Dabrowski, K., Gaylord, T. G., Hardy, R. W., . . . Nelson, R. (2007). Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture research, 38(6), 551-579.
Glencross, B. D. (2009). Exploring the nutritional demand for essential fatty acids by aquaculture species. Reviews in Aquaculture, 1(2), 71-124.
Henderson, R. J., & Tocher, D. R. (1987). The lipid composition and biochemistry of freshwater fish. Progress in lipid research, 26(4), 281-347.
Huang, C.-H., Huang, M.-C., & Hou, P.-C. (1998). Effect of dietary lipids on fatty acid composition and lipid peroxidation in sarcoplasmic reticulum of hybrid tilapia, Oreochromis niloticus× O. aureus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 120(2), 331-336.
Ibeas, C., Cejas, J., Fores, R., Badia, P., Gomez, T., & Hernández, A. L. (1997). Influence of eicosapentaenoic to docosahexaenoic acid ratio (EPADHA) of dietary lipids on growth and fatty acid composition of gilthead seabream (Sparus aurata) juveniles. Aquaculture, 150(1-2), 91-102.
Izquierdo, M., Montero, D., Robaina, L., Caballero, M., Rosenlund, G., & Ginés, R. (2005). Alterations in fillet fatty acid profile and flesh quality in gilthead seabream (Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding. Aquaculture, 250(1-2), 431-444.
Kalogeropoulos, N., Alexis, M. N., & Henderson, R. J. (1992). Effects of dietary soybean and cod-liver oil levels on growth and body composition of gilthead bream (Sparus aurata). Aquaculture, 104(3-4), 293-308.
Kamarudin, M., Ramezani‐Fard, E., Saad, C., & Harmin, S. (2012). Effects of dietary fish oil replacement by various vegetable oils on growth performance, body composition and fatty acid profile of juvenile Malaysian mahseer, Tor tambroides. Aquaculture Nutrition, 18(5), 532-543.
KANAZAWA, A. (1982). Rearing of larval red sea bream and ayu with artifical diets. Mem. Fac. Fish. Kagoshima Univ., 31, 185-192.
Kanazawa, A., Teshima, S.-i., & Imai, K. (1980). Biosynthesis of fatty acids in Tilapia zillii and the puffer fish. Memoirs of Faculty of Fisheries, Kagoshima University, 29, 313-318.
Kanczuzewski, K., & Trushenski, J. T. (2015). Evaluation of hydrogenated soybean oil in feeds for hybrid Striped Bass fed in conjunction with finishing periods of different durations. North American Journal of Aquaculture, 77(1), 8-17.
Lane, R. L., Trushenski, J. T., & Kohler, C. C. (2006). Modification of fillet composition and evidence of differential fatty acid turnover in sunshine bass Morone chrysops× M. saxatilis following change in dietary lipid source. Lipids, 41(11), 1029-1038.
Lochmann, R. T., & Gatlin, D. M. (1993). Essential fatty acid requirement of juvenile red drum (Sciaenops ocellatus). Fish Physiology and Biochemistry, 12(3), 221-235.
Lovell, T. (1989). Nutrition and feeding of fish (Vol. 260): Springer.
MFMER (Mayo Foundation for Medical Education and Research) (2007). Trans fat: Avoid this cholesterol double whammy.
Miles, E. A., & Calder, P. C. (2012). Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. British Journal of Nutrition, 107(S2), S171-S184.
Montero, D., Robaina, L., Caballero, M., Gines, R., & Izquierdo, M. (2005). Growth, feed utilization and flesh quality of European sea bass (Dicentrarchus labrax) fed diets containing vegetable oils: a time-course study on the effect of a re-feeding period with a 100% fish oil diet. Aquaculture, 248(1-4), 121-134.
Morris, M. S. (2003). Homocysteine and Alzheimer's disease. The Lancet Neurology, 2(7), 425-428.
Morrison, W. R., & Smith, L. M. (1964). Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. Journal of Lipid Research, 5(4), 600-608.
Mozanzadeh, M. T., Agh, N., Yavari, V., Marammazi, J. G., Mohammadian, T., & Gisbert, E. (2016). Partial or total replacement of dietary fish oil with alternative lipid sources in silvery-black porgy (Sparidentex hasta). Aquaculture, 451, 232-240. doi:https://doi.org/10.1016/j.aquaculture.2015.09.022
NRC (National Research Council). (2011). Nutrient requirements of fish and shrimp. National Academies Press, Washington D. C., USA
Opsahl-Ferstad, H.-G., Rudi, H., Ruyter, B., & Refstie, S. (2003). Biotechnological approaches to modify rapeseed oil composition for applications in aquaculture. Plant Science, 165(2), 349-357.
Ortega, R., López, V., Carrasco, X., Anllo-Vento, L., & Aboitiz, F. (2013). Exogenous orienting of visual-spatial attention in ADHD children. Brain research, 1493, 68-79.
Piedecausa, M., Mazón, M., García, B. G., & Hernández, M. (2007). Effects of total replacement of fish oil by vegetable oils in the diets of sharpsnout seabream (Diplodus puntazzo). Aquaculture, 263(1-4), 211-219.
Quinn, J. F., Raman, R., Thomas, R. G., Yurko-Mauro, K., Nelson, E. B., Van Dyck, C., . . . Weiner, M. (2010). Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. Jama, 304(17), 1903-1911.
Reis, B., Cabral, E. M., Fernandes, T. J., Castro-Cunha, M., Oliveira, M. B. P., Cunha, L. M., & Valente, L. M. (2014a). Long-term feeding of vegetable oils to Senegalese sole until market size: effects on growth and flesh quality. Recovery of fatty acid profiles by a fish oil finishing diet. Aquaculture, 434, 425-433.
Reis, B., Cabral, E. M., Fernandes, T. J. R., Castro-Cunha, M., Oliveira, M. B. P. P., Cunha, L. M., & Valente, L. M. P. (2014b). Long-term feeding of vegetable oils to Senegalese sole until market size: Effects on growth and flesh quality. Recovery of fatty acid profiles by a fish oil finishing diet. Aquaculture, 434, 425-433. doi:https://doi.org/10.1016/j.aquaculture.2014.09.002
Rombenso, A. N., Trushenski, J. T., & Drawbridge, M. (2018). Saturated lipids are more effective than others in juvenile California yellowtail feeds—Understanding and harnessing LC-PUFA sparing for fish oil replacement. Aquaculture, 493, 192-203.
Rombenso, A. N., Trushenski, J. T., Jirsa, D., & Drawbridge, M. (2015). Successful fish oil sparing in White Seabass feeds using saturated fatty acid-rich soybean oil and 22: 6n-3 (DHA) supplementation. Aquaculture, 448, 176-185.
Rombenso, A. N., Trushenski, J. T., & Schwarz, M. H. (2016). Fish oil replacement in feeds for juvenile Florida Pompano: Composition of alternative lipid influences degree of tissue fatty acid profile distortion. Aquaculture, 458, 177-186.
Sargent, J., & Tacon, A. (1999). Development of farmed fish: a nutritionally necessary alternative to meat. proceedings of the Nutrition Society, 58(2), 377-383.
Sargent, J., Tocher, D., Bell, J., Halver, J., & Hardy, R. (2002). Fish nutrition. The Lipids, 182-257.
Senadheera, S., Turchini, G., Thanuthong, T., & Francis, D. (2010). Effects of dietary α-linolenic acid (18: 3n− 3)/linoleic acid (18: 2n− 6) ratio on growth performance, fillet fatty acid profile and finishing efficiency in Murray cod. Aquaculture, 309(1-4), 222-230.
Senadheera, S. P. S. D., Turchini, G. M., Thanuthong, T., & Francis, D. S. (2010). Effects of dietary α-linolenic acid (18:3n−3)/linoleic acid (18:2n−6) ratio on growth performance, fillet fatty acid profile and finishing efficiency in Murray cod. Aquaculture, 309(1), 222-230. doi:https://doi.org/10.1016/j.aquaculture.2010.09.039
Stowell, S. L., & Gatlin III, D. M. (1992). Effects of dietary pantethine and lipid levels on growth and body composition of channel catfish, Ictalurus punctatus. Aquaculture, 108(1-2), 177-188.
Takeuchi, T. (1996). Essential fatty acid requirements in carp. Archives of Animal Nutrition, 49(1), 23-32.
Takeuchi, T., Masuda, R., Ishizaki, Y., Watanabe, T., Kanematsu, M., Imaizumi, K., & Tsukamoto, K. (1996). Determination of the requirement of larval striped jack for eicosapentaenoic acid and docosahexaenoic acid using enriched Artemia nauplii. Fisheries science, 62(5), 760-765.
Thanuthong, T., Francis, D. S., Manickam, E., Senadheera, S. D., Cameron-Smith, D., & Turchini, G. M. (2011). Fish oil replacement in rainbow trout diets and total dietary PUFA content: II) Effects on fatty acid metabolism and in vivo fatty acid bioconversion. Aquaculture, 322, 99-108.
Tocher, D. R. (2010). Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture research, 41(5), 717-732.
Trushenski, J., Mulligan, B., Jirsa, D., & Drawbridge, M. (2013). Sparing fish oil with soybean oil in feeds for White Seabass: effects of inclusion rate and soybean oil composition. North American Journal of Aquaculture, 75(2), 305-315.
Tur, J., Bibiloni, M., Sureda, A., & Pons, A. (2012). Dietary sources of omega 3 fatty acids: public health risks and benefits. British Journal of Nutrition, 107(S2), S23-S52.
Turchini, G., Francis, D., Senadheera, S., Thanuthong, T., & De Silva, S. (2011). Fish oil replacement with different vegetable oils in Murray cod: evidence of an “omega-3 sparing effect” by other dietary fatty acids. Aquaculture, 315(3-4), 250-259.
USB (United Soybean Board) (2012). Beyond the Bean 2012.
Uauy, R., & Valenzuela, A. (2000). Marine oils: the health benefits of n-3 fatty acids. Nutrition (Burbank, Los Angeles County, Calif.), 16(7-8), 680-684.
Ways, P., & Hanahan, D. J. (1964). Characterization and quantification of red cell lipids in normal man. Journal of Lipid Research, 5(3), 318-328.
Williams, K. C. (2009). A review of feeding practices and nutritional requirements of postlarval groupers. Aquaculture, 292(3-4), 141-152.
Woitel, F. R., Trushenski, J. T., Schwarz, M. H., & Jahncke, M. L. (2014). More judicious use of fish oil in Cobia feeds: I. Assessing the relative merits of alternative lipids. North American Journal of Aquaculture, 76(3), 222-231.
Wolff, R. L., Combe, N. A., Destaillats, F., Boué, C., Precht, D., Molkentin, J., & Entressangles, B. (2000). Follow‐up of the Δ4 to Δ16 trans‐18∶ 1 isomer profile and content in French processed foods containing partially hydrogenated vegetable oils during the period 1995–1999. Analytical and nutritional implications. Lipids, 35(8), 815-825.
Wu, F.-C., & Chen, H.-Y. (2012). Effects of dietary linolenic acid to linoleic acid ratio on growth, tissue fatty acid profile and immune response of the juvenile grouper Epinephelus malabaricus. Aquaculture, 324, 111-117.
Wu, F.-C., Ting, Y.-Y., & Chen, H.-Y. (2002). Docosahexaenoic acid is superior to eicosapentaenoic acid as the essential fatty acid for growth of grouper, Epinephelus malabaricus. The Journal of nutrition, 132(1), 72-79.
Xu, R., Hung, S. S., & German, J. B. (1993). White sturgeon tissue fatty acid compositions are affected by dietary lipids. The Journal of nutrition, 123(10), 1685-1692.
Yu, T., & Sinnhuber, R. (1979). Effect of dietary ω3 and ω6 fatty acids on growth and feed conversion efficiency of coho salmon (Oncorhynchus kisutch). Aquaculture, 16(1), 31-38.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code