博碩士論文 etd-0629106-165754 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 黃彥瑋(Yen-Wei Huang) 電子郵件信箱 E-mail 資料不公開
畢業系所 環境工程研究所(Environmental Engineering)
畢業學位 碩士(Master) 畢業時期 94學年第2學期
論文名稱(中) 以蓄熱式焚化爐處理含二甲基甲醯氨排氣
暨氣氮氧化物生成之研究
論文名稱(英) Study on The Regenerative Thermal Oxidation of Gas-borne N,N-dimethylformamide (DMF) and Its Associated NOx Formation Characteristics
檔案
  • etd-0629106-165754.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:校內一年後公開,校外永不公開

    論文語文/頁數 中文/118
    統計 本論文已被瀏覽 5601 次,被下載 16 次
    摘要(中) 本研究利用一蓄熱式焚化爐(RTO)處理含氮揮發性有機物(Volatile Organic Compounds, VOCs),測試進氣中含氮VOC濃度與燃燒生成氮氧化物(NOx)之關係,並進行設備操作性能之評估。供試RTO為雙槽式,蓄熱床尺寸為0.152 m (L) × 0.140 m (W) × 1.00 m (H),床內填充1.11 cm粒徑礫石1.0 m厚,填充層孔隙度為0.416。供試VOCs為二甲基甲醯胺(Dimethyl formamide ,簡稱DMF)及丁酮(Methyl ethly ketone,簡稱MEK)
    實驗包括進氣無VOC及含VOCs二階段。在進氣無VOC部分,試驗在相同閥門切換時間ts (1.5 min)時,改變氣體空塔流速Ug (0.37-0.74 m/s)及設定焚化溫度Tset (750-950oC)對RTO熱回收率及氣體通過蓄熱床壓損等之影響。在進氣含VOCs部分,包括單一(DMF)及混合(MEK及DMF)進氣二階段,分別試驗在相同ts (1.5 min)及Ug (0.39 m/s)時,改變Tset (750-950oC)及進氣VOC濃度(DMF=100-250 ppm,MEK/DMF=50/100 - 1500/100 (ppm/ppm))對VOC之破壞去除率及燃燒生成NOx之關係。
    研究結果顯示:(1)在Tset=750-950oC,進氣不含DMF時,焚化均無NOx生成;DMF之破壞去除率分別為96.3 (750oC)、97.4 (850oC)、97.9 % (950oC);進氣含高濃度DMF時,其破壞去除率較高;「NOx-N生成/DMF破壞」之分子數比為0.84-1.20;NOx之產生與DMF進氣濃度成反比關係。(2) MEK/DMF混合進氣時,添加MEK對於DMF之破壞去除率無顯著影響;進氣比與NOx的生成較無相關性,「NOx-N生成/DMF破壞」之分子數比為0.85-1.07。(3) Ergun方程式可合理用於估算氣體經RTO床之壓損,壓損與焚化溫度及進氣風量成正比關係;爐床熱回收率與進氣風量成反比關係,但與焚化溫度則無顯著關係。
    摘要(英) In this study, a two-bed electrically-heated regenerative thermal oxidizer (RTO) was used to test NOx formation characteristics from burning air-laden N, N-dimethyl formamide (DMF) and air-laden DMF mixed with methyl ethyl ketone (MEK). The RTO contained two 0.152 m × 0.14 m × 1.0 m (L × W × H) beds both packed with gravel particles of around 1.11 cm in average diameter to a height of 1.0 m, and the packed section had a void fraction of 0.416. Performances on the thermal destructions of DMF and MEK, the thermal recovery efficiency, as well as the gas pressure drop over the regenerative beds were investigated.
    Experimental results indicate that, with a valve shifting time (ts) of 1.5 min, gas superficial velocities (Ug) of 0.39-0.78 m/s (evaluated at an influent air temperature of around 30oC), and set maximum destruction temperatures (Tset) of 750-950 oC, there was no NOx in the effluent gas from the RTO with no DMF in the influent air. With only DMF in the influent gas, its destruction efficiencies were 96.3 (750oC), 97.4 (850oC) and 97.9 % (950oC), and increased with increasing influent DMF concentration from 100-250 ppm. Mole ratios of “NOx-N formation/DMF destruction” were found to be in the range of 0.84-1.20, and the ratio decreased with increasing influent DMF concentration within the experimental range. With both DMF and MEK in the influent gas, no significant influence was found in the NOx formation ratio and the DMF destruction efficiency with influent MEK/DMF ratios of 50/100 - 1500/100 (ppm/ppm) and the set temperatures. The NOx formation ratios were in the range of 0.85-1.07. The Ergun equation was adequate for the estimation of the pressure drop for the gas flowing over the packed regenerative beds in the Ug range of 37-0.74 m/s. It was also found that the thermal recovery efficiency was decreasing with the increasing Ug and invariant with Tset.
    關鍵字(中)
  • 蓄熱式焚化爐
  • 氮氧化物
  • 二甲基甲醯氨
  • 關鍵字(英)
  • Regenerative Thermal Oxidation
  • DMF
  • NOx
  • 論文目次 謝誌……………………………………………………………………………………………... Ⅰ
    中文摘要…………………………………….………………………………………………... Ⅱ
    英文摘要…………………………………………………………………………….………... Ⅳ
    目錄……………………………………………………………………………………………... Ⅵ
    表目錄..….………………………………………………………………………………….….. Ⅸ
    圖目錄..………….……………………………………………………………………………... ⅩⅡ
    照片目錄….……………..……………………………………………………………………. ⅩⅤ
    符號表………………………………….………………………………………………………. ⅩⅥ
    第一章 前言……………………….………………………………………………………... 1
    1.1研究緣起……………………………………………………………………………… 1
    1.2研究目的……….……………………………………………………………………... 6
    第二章 文獻回顧………………………………………………………………………… 7
    2.1國內合成皮工業現況.….………………………………………………………. 8
    2.2 VOCs之性質及焚化特性…………..…………………….………………….. 8
    2.3蓄熱式焚化法簡介…………………………………………….………………… 10
    2.4氮氧化物生成機制………….…………………………………………………… 13
    2.4.1 Thermal NOx………..………………………....……………………………….. 14
    2.4.2 Prompt NOx….……...………………….………………………………………. 14
    2.4.3 Fuel NOx………..………….……...……………………….…………………….. 15
    2.5氮氧化物控制技術….……….………...……………………….…………………. 18
    2.5.1燃燒操作條件調整.….………...……………………….…………………… 18
    2.5.1.1低過剩氧操作(LEA)…………………………………………………… 18
    2.5.1.2分段燃燒法………………………………………………………………… 19
    2.5.1.3煙道迴流法(FRG)………………………………………………………. 20
    2.5.1.4再燃燒法(Reburning)………………………………………………….. 20
    2.5.2 低氮氧化物燃燒器(LNB) ……………………………………………… 21
    2.5.2.1 低氮氧化物燃燒器原理簡介……………………………………... 21
    2.5.3 選擇性觸媒還原法(SCR) ……………………………………………… 22
    2.5.3.1 選擇性觸媒還原法原理……………………………………………. 22
    2.5.3.2 SCR系統單元介紹……………………………………………………. 23
    2.5.3.3 SCR系統觸媒種類與型式………………………………………… 24
    2.5.3.4 影響觸媒性能因素…………………………………………………… 26
    2.5.3.5 觸媒失活現象與廢觸媒處理…………………………………….. 27
    2.5.4 選擇性非觸媒還原法(SNCR) ………………………………………... 29
    2.5.4.1 SNCR原理簡介………………………………………………………… 29
    2-5.5電漿技術de-NOx法……………………………………………….……….. 31
    2.6 Fuel NOx生成相關文獻………………………………………………………. 33
    第三章 實驗設備及方法……………………………………………………….……... 36
    3.1設備…………...………………………………………………………………………… 36
    3.1.1實驗設備………...………………………...…………………………………….. 36
    3.1.2分析設備………………………………………………………………………… 40
    3.2實驗藥品及氣體…...……………………………………………………………… 40
    3.3方法…………...………………………………………………………………………… 41
    3.3.1實驗方法…..…………………………………………………………………….. 41
    3.3.2分析方法…………………………...………….………………………………… 44
    第四章 結果與討論……………………………………………………………………... 48
    4.1進氣未含VOC及僅含DMF試驗....……………………………..……… 48
    4.1.1 DMF濃度與溫度對去除率與NOx的生成率影響…………… 48
    4.1.2焚化溫度與DMF破壞去除效率之相關性討論.…………….… 51
    4.1.3質量平衡之探討………….………………….................................................. 53
    4.2混合進氣(MEK/DMF)試驗……….………………………………………….. 55
    4.2.1 DMF與MEK混合進氣對去除率與NOx的生成率影響… 55
    4.3 設備操作性能之探討………………..………………………………………… 61
    4.3.1 爐床升溫及床溫分布情形……………………………………………... 62
    4.3.2 設備熱回收率…………………..………………………………………..…... 74
    4.3.3 氣體通過蓄熱床之壓損……..………………………..………...……….. 76
    4.3.4 設備操作費用評估…………………..…………………………………….. 81
    第五章 結論與建議……………………………………………………………………... 82
    5.1結論……………………………………………………………………………………... 82
    5.1.1單一DMF進氣……………………………...…….…………………………. 82
    5.1.2 DMF與MEK混合進氣……………...………….……………….………. 83
    5.1.3設備操作性能..……………………………….……………………………….. 83
    5.1.3.1爐床升溫及床溫分布情形………..……...…………………………. 83
    5.1.3.2熱回收率及壓損..……………………………….…………….…………. 84
    5.1.3.3操作條件及費用…………………………………………………….…... 84
    5.2建議……………………………………………………………………………………... 85
    參考文獻……………………………………………………………………………………… 86
    附錄一 進氣無VOCs時之蓄熱床溫度記錄表………….…………………. 90
    附錄二 檢量線………….………………..………………………………………………... 97
    參考文獻 1. 行政院環境保護署環境保護人員訓練所,空氣污染防治法規,行政院環境保護署環境保護人員訓練所,中華民國九十年五月。
    2. 工研院工業安全衛生技術開發中心,物質安全資料表,行政院勞工委員會。
    3. 周明顯,揮發性有機物控制技術講義,中山大學環境工程研究所,中華民國九十三年二月。
    4. 張火炎等,合成皮製造業勞工丁酮與二甲基甲醯胺混合暴露對於生物偵測之影響,勞工安全衛生研究報告,2005 IOSH93-A104,中華民國九十四年。
    5. 石東生,張火炎等,DMF之皮膚吸收與生物偵測 勞工安全衛生研究報告 2003 IOSH91-A319,中華民國九十三年。
    6. 石東生等,合成皮業勞工二甲基甲醯胺暴露危害調查與改善控制研究勞工安全衛生研究報告,2005 IOSH93-A318,中華民國九十四年。
    7. Wen-Tien Tsai, “Catalytic incineration of organic vapors N,N-dimethylformamide,” J. Haz. Mat., 37, 241-251 (1994).
    8. G. P. Escobar, A. Q. Beroy, M. P. P. Iritia, and J. H. Huerta “Kinetic study of the combustion of methyl-ethyl ketone over α-hematite catalyst,” Chem. Eng. J., 102 107-117 (2004).
    9. 李偉勝,模場與實場蓄熱式焚化爐處理排氣中揮發性有機物之操作性能研究,國立中山大學環境工程研究所碩士論文,中華民國八十八年六月。
    10. 黑正明,以蓄熱式焚化爐處理含氯揮發性有機物之操作性能研究,國立中山大學環境工程研究所碩士論文,中華民國九十年六月。
    11. 周明顯,黃柏仁,鄭文熙,以蓄熱式觸媒焚化設施處理排氣中揮發性有機物質之理論解析與驗證,第十五屆空氣污染控制技術研討會論文集,1998。
    12. 黃柏仁,以蓄熱式觸媒焚化設施處理排氣中揮發性有機物質之理論解析與驗證,國立中山大學環境工程研究所碩士論文,中華民國八十七年六月。
    13. 沈明宗,實場蓄熱式焚化爐處理排氣中揮發性有機物之操作性能研究,國立中山大學環境工程研究所碩士論文,中華民國九十年六月。
    14. B.-S. Choi and J. Yi, “Simulation and optimization on the regenerative thermal oxidation of volatile organic compounds,” Chem. Eng. J., 76, 103-114 (2000).
    15. R. T. Waibel, “Ultra low NOx burners for industrial process heaters,” John Zink Co., July 19-22 (1993).
    16. R. C. Flagan, G. Serge, and J. P. Appleton, “Rate constrained partial equilibrium models for the formation of nitric oxide from organic fuel nitrogen,” Combustion and Flame, 22, 299-311 (1974).
    17. R. Zevenhoven, “Nitrogen oxides from nitrogen-containing waste fuels at FBC conditions - Part 1,” The 39th IEA FBC Meeting, November 22-24 (1999).
    18. R. Zevenhoven, “Nitrogen oxides from nitrogen-containing waste fuels at FBC conditions - Part 2,” The 40th IEA FBC Meeting, May 24-25 (2000).
    19. S. Naha, S. K. Aggarwal, “Fuel effects on NOx emissions in partially premixed flames,” Combustion and Flame, 139, 90–105 (2004).
    20. D. C. Liu, B. X. Shen, B. Feng, Z. J. Lin, and J. D. Lu “Influence of coal properties on emissions of nitrous oxides and nitric oxides,” Energy & Fuels, 13, Novenber 6 (1999).
    21. L. Molero and A. Burgess, “Combustion generated NOx and SO2 from heavy liquid fuels,” The Combustion Institute. Funchal (Portugal), 6.7.1-6.7.4 (1996).
    22. 江金龍等編著,空氣污染與控制,高立出版社,1997。
    23. 朱信等,南高屏地區空氣污染總量管制規劃-F2子計畫:氮氧化物控制技術效率及成本資料調查分析,1999 EPA-88-FA21-03-0012 (1999).
    24. U.S. EPA, “Nitrogen oxides (NOx), why and how they are controlled,” EPA 456/F-99-006R, November 1999 (1999).
    25. G. Busca , M. A.Larrubia, L. Arrighi, and G. Ramis, “Catalytic abatement of NOx: chemical and mechanistic aspects,” Catalysis Today, 107-108, 139-148 (2005).
    26. E. C. Zabetta, M. Hupa, and K. Saviharju, “Reducing NOx emissions using fuel staging, air staging, and selective noncatalytic reduction in Synergy Ind. Eng.,” Chem. Res., 44, 4552-4561 (2005).
    27. X. Hu, G. B. Zhao, S. F. Legowski, and M. Radosz1, “Moisture effect on NOx conversion in a nonthermal plasma reactor,” Environ. Eng. Sci., 22 (2005).
    28. M. A. Wojtowicz , F. P. Miknis, R.W. Grimes, W. W. Smith, and M. A. Serio, “Control of nitric oxide, nitrous oxide, and ammonia emissions using microwave plasmas,” J. Haz. Mat., 74, 81-89 (2000).
    29. M. Galbitna, A. Cavigiolo, A. Androeffuggi, D. Gelosa, and R. Torota, ”Mild combustion for fuel-NOx reduction,” Combust. Sci. Tech., 176, 1035-1054 (2004).
    30. N. D. Never, “Air pollution control engineering,”, McGraw-Hill, Inc., 455-538 (1995).
    31. H. C. Perkins著,林政剛等編譯,空氣污染,McGraw-Hill, Inc. (1995).
    32. R. H. Perry and D. Green, “Perry’s chemical engineers’ handbook, 6th ed.,” McGraw-Hill International Ed. (1984).
    33. C. J. Gennkoplis, “Transport process and unit operation, 3rd ed.,”Prentice-Hall Inc., U.S.A. (1995).
    34. C. D. Cooper and F. C. Alley, “Air pollution control, A design approach,” Waveland Press Inc., Illinois (1990).
    口試委員
  • 陳康興 - 召集委員
  • 朱信 - 委員
  • 周明顯 - 指導教授
  • 口試日期 2006-06-08 繳交日期 2006-06-29

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫