博碩士論文 etd-0628112-152031 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 傅昱涵 (Yu-Han Fu) 電子郵件信箱 E-mail 資料不公開
畢業系所 海洋地質及化學研究所(Marine Geology and chemistry)
畢業學位 碩士(Master) 畢業時期 100學年第2學期
論文名稱(中) 熱帶與副熱帶河口二氧化碳通量及其機制-以台灣為例 
論文名稱(英) Tropical and subtropical estuaries’ CO2 fluxes and mechanisms-Case study of Taiwan
檔案
  • etd-0628112-152031.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:使用者自訂權限:校內立即公開、校外 1 年後公開

    論文語文/頁數 中文/109
    統計 本論文已被瀏覽 5360 次,被下載 1143 次
    摘要(中) 二氧化碳為最重要之溫室氣體,也是導致當前全球氣候變遷之主要因子。海洋為除大氣圈之外,最重要之二氧化碳的匯。然而,目前資料顯示,在估算全球二氧化碳通量可能忽略了河口及海岸地區。這主要是因為,河口及海岸地區的實測二氧化碳資料非常有限,其中又以熱帶與亞熱帶地區河口數據更為缺乏。雖然目前的研究皆指出河口為二氧化碳的源,但因數量不足,而無法得知確切的二氧化碳總釋放量。為了解決此問題,本研究團隊調查了25條台灣河川河口,於2009年9、12月,2010年4、6、11月及2011年11月進行採樣,並探討其二氧化碳通量在季節上之變化及其相關機制。
      不論在西部或東部河口,多數之fCO2高過於大氣飽和值,為大氣二氧化碳的源(source),沒有明顯的季節變化。隨著鹽度增加有遞減的趨勢,因西部開發較東部早且人口稠密,受人為活動影響大,使得其fCO2高於東部。西部河口fCO2與鹽度有相關性,推測與混合作用有關,另外,亦與AOU、pH及營養鹽(NO3-和PO43-)有相關,推測受到生物作用的影響。東部河口fCO2與眾多參數並未有良好的相關性,推測可能是因為東部地勢較西部陡峭,河流長度較短,滯留時間短,許多作用來不及反應(例如:生物作用),水即入海。二氧化碳通量以春季最高(81.7±15.8 mmol C m-2 d-1)及冬季最低(54.1±132 mmol C m-2 d-1)。整年平均約為24.6±19.2 mol C m-2 y-1,約為珠江(6.9 mol C m-2 y-1)的3.5倍,近似於世界河口平均(23.7±33.1 molC m-2 y-1)。
      上河口fCO2與AOU及PO43-的關係最佳,推測受到人為活動影響及生物的呼吸作用。中河口地區生地化作用較上河口複雜,與pH及DIC關係較好,推測主要還是與生物作用有機質分解有關。下河口地區除了受到生物作用外,受到海水的影響比上、下河口來的明顯,與混合作用有關。上河口fCO2最高(2228±92.0 uatm),平均CO2通量為42.3±1.54 (mol C m-2 y-1);中河口次之,其fCO2為1302±353 (uatm),變化幅度比上河口大,平均CO2通量為25.8±1.26 (mol C m-2 y-1);下河口最低,fCO2為559±14.9 (uatm),平均CO2通量為7.38±7.45 (mol C m-2 y-1)。
      將全世界106個河口依鹽度分成上、中及下河口,其fCO2分別為3033±1078、2277±626及692±178 uatm;CO2通量各為68.5±25.6、37.4±16.5及9.92±15.2 mol C m-2 y-1,上河地區的CO2通量可能有高估的情形。依緯度來區分,不論在低緯度、中緯度亦或是高緯度地區的河口,均為CO2釋放至大氣中的源。而高緯度地區平均CO2水-氣通量略低於其餘兩個地區,但整體來說這三個地區平均CO2水-氣通量約為24 mol C m-2 y-1。全球河口地區不論在哪一種季節均是釋放CO2的源,以秋季CO2通量最高(73.2±93.4 mmol C m-2 d-1),而冬季最低(53.4±65.1 mmol C m-2 d-1),整年平均為23.9±33.1 mol C m-2 y-1,全球河口總通量約為0.26 Pg C y-1。
      利用175條熱帶河川的碳參數來估算熱帶地區河川的碳輸出量。四個地區(非洲、美洲、亞洲及大洋洲)的熱帶河川DIC單位面積通量分別為:0.63、3.33、9.79及3.38 g C m-2 y-1,因亞洲地區的河川多為碳酸鹽地質,再加上流量大,使得亞洲河川有最高的DIC輸出通量;而 PIC通量分別為:7.40×1012 (非洲)、2.82×1013 (美洲)、1.53×1013 (亞洲)及2.49×1011 g C y-1 (大洋洲)。四個地區的熱帶河川DOC通量分別:2.80×1013 (非洲)、5.82×1013 (美洲)、4.50×1013 (亞洲)及4.48×1012 g C y-1 (大洋洲),整個熱帶區河川的DOC通量為0.136 Pg C y-1;估算熱帶地區河川的碳輸出量,每年約有0.53 Pg C輸入至海洋,其中DIC占39.8%、DOC占25.7%、PIC占9.7%及POC占24.8%。
    摘要(英) Carbon dioxide is the most important greenhouse gas and the major factor leading to the global climate change problem. In previous studies, the ocean is considered to be the major storage of anthropogenic carbon dioxide. However, evaluation of the global CO2 flux seldom includes the estuarine and coastal regions. It should be noted that the current estimate is based on a very limited data set. In particular, data from subtropical and tropical river estuaries are scarce. Many researches point out that the estuary is a CO2 source to the atmosphere, but the data is insufficient so one couldn’t obtain the total CO2 flux accurately. In this study, our team sampled 25 estuaries based on field surveys covering four seasons in Taiwan, aiming to better quantify the estimation of CO2 flux in the coastal regions.   
       The dissociation constants of carbonic acid are unavailable to calculate the fCO2 in the low salinity (S<1). Therefore, the difference (%) between measured and calculated is very large but will be reduced with increasing salinity. Furthermore, in the process of measuring total alkalinity and pH, accuracy may reduce because of humic acid and variations of ionic strength.
       No matter in the western or eastern estuaries, most of fCO2 values is higher than the atmosphere. And they decrease downstream with increasing salinity. The fCO2 is higher in the west than in the east, because of human activities. Neither group of estuaries shows obvious seasonal variability.
       The fCO2 in the estuaries has a relationship with salinity, because of mixing with sea water. Because fCO2 is controlled by biological activity, it also has a relationship with AOU, pH and nutrients (NO3- and PO43-). In the east, the fCO2 has no correlation with many parameters. It is probably that the slope is steeper and the river length is shorter in the east than in the west resulting in short resident time. So that many reactions are not complete before the water exports to the sea.
    The average water-to-air CO2 flux is 24.6±19.2 (mol C m-2 y-1), which is 3.5 times the value of Pearl River (6.9 mol C m-2 y-1) but similar to the world average (23.7±33.1 mol C m-2 y-1). The CO2 flux is the highest in spring (81.7±15.8 mmol C m-2 d-1) and the lowest in winter (54.1±132 mmol C m-2 d-1).
    Upper/mid/lower estuaries are operationally defined as those areas of estuaries with salinities below 2, between 2 and 25, and above 25, respectively. The trends of fCO2 have good relationships with AOU and PO43- in the upper estuaries. The reason is probably caused by human activities and biological respiration. The phenomenon is more complex in the mid than in the upper estuaries. Consequently, the fCO2 has a good correlation with pH and DIC in the mid estuaries as a result of organic matter decomposition. However, in the lower estuaries, the variation of fCO2 is subjected to biological respiration and mixing with sea water. 
    The fCO2 is the highest in the upper estuaries (2228±92.0 uatm),the average water-air CO2 flux is 42.3±1.54 (mol C m-2 y-1). Measured fCO2 in the mid estuaries is 1302±353 (uatm) and the average CO2 flux is 25.8±1.26 (mol C m-2 y-1). The lowest fCO2 (559±14.9 uatm) is found in the lower estuaries and the CO2 flux is 7.38±7.45 (mol C m-2 y-1).
    The 106 estuaries of the globe are divided into three parts by salinity. The fCO2 is 3033±1078, 2277±626 and 692±178 uatm in the upper, mid and lower estuaries, respectively. The average CO2 flux is 68.5±25.6、37.4±16.5 and 9.92±15.2 mol C m-2 y-1, respectively. Geographically estuaries in all three latitude bands (<23.5o, 23.5-50o and >50o) are generally sources of CO2. Interestingly, water-to-air fluxes do not significantly, and all fall around 24 mol C m-2 y-1 although the flux is slightly lower at high latitude. The water in estuaries release CO2 in all seasons although the flux seems to be highest in autumn (73.2± 93.4 mmol C m-2 d-1) and lowest (53.4±65.1 mmol C m-2 d-1) in winter. The average CO2 flux is 23.9±33.1 mol C m-2 y-1, and the total CO2 flux is 0.26 Pg C y-1.
    Next, we estimate the tropical rivers’ carbon fluxes using carbon parameters concerning 175 rivers globally between 30oN and 30oS. The specific DIC yield (flux/area) are 0.63, 3.33, 9.79 and 3.38 g C m-2 y-1 in tropical Africa, the Americas, Asia and Oceania, respectively. The DIC flux in Asia is the highest among the four regions, mainly because the percentage of carbonate rock is highest there and the second highest water discharge there. The PIC fluxes are 7.40×1012 g C y-1 in Africa, 2.82×1013 g C y-1 in the Americas, 1.53×1013 g C y-1 in Asia and 2.49×1011 g C y-1 in Oceania. The DOC fluxes are 2.80×1013, 5.82×1013, 4.50×1013 and 4.48×1012 g C y-1 in tropical Africa, the Americas, Asia and Oceania, respectively, for a total DOC flux of 0.136 Pg C y-1. Tropical rivers provide 0.53 Pg C y-1 of carbon to the oceans, of which 39.8% is DIC, 25.7% is DOC, 9.7% is PIC and 24.8% is POC.
    關鍵字(中)
  • 有機質
  • 二氧化碳
  • 河口
  • 海岸地區
  • 季節變化
  • 關鍵字(英)
  • seasonal variability
  • estuary
  • coastal region
  • carbon dioxide
  • organic matter
  • 論文目次 致謝 ..............................................................i
    中文摘要 ..........................................................ii
    英文摘要 ..........................................................iv
    目錄 .............................................................viii
    圖目錄 ............................................................xi
    表目錄............................................................xiii
    一、前言..................................................1
       1.1緒論................................................1
       1.2文獻回顧........................................3
    二、研究材料與方法...............................6
       2.1研究區域.......................................6
         2.1.1河川與地質構造.....................6
         2.1.2研究材料..................................6
       2.2研究方法.........................................8
         2.2.1營養鹽(硝酸鹽、亞硝酸鹽、磷酸鹽及矽酸鹽)
             之測定.......................................8
         2.2.2酸鹼值pH值之測定..................8
         2.2.3總鹼度(TA)之測定.....................9
         2.2.4溶解態無機碳(DIC)之測定.......10
         2.2.5表水二氧化碳分壓(fCO2)之測定.10
         2.2.6 水氣交換之碳通量計算.............12
    三、結果與討論-河口fCO2........................13
       3.1河口fCO2-實測與理論計算值之比較.......13
       3.2影響河口二氧化碳計算值可能原因 ............14
        3.2.1 TA的測量....................................14
        3.2.2 pH的測量...................................16
       3.3河口fCO2在季節上之分布及其機制....17
        3.3.1二氧化碳與鹽度(Salinity)之關係.......17
        3.3.2二氧化碳與各參數間之關係...............19
       3.4二氧化碳釋放通量在季節上的變化.......30
       3.5河口二氧化碳在空間 (上、中和下河口)之分布及其
          控制機..................................................... 33
        3.5.1上河口................................................33
        3.5.2中河口................................................40
        3.5.3下河口................................................47
       3.6 fCO2通量在空間上的變化 (上、中、下河口)
      ..................................................................55
    四、世界河口fCO2通量及熱帶河川碳輸出量之探討
    .....................................................................58
       4.1世界河口二氧化碳通量變化.................58
         4.1.1上、中及下河口二氧化碳通量變化..58
         4.1.2不同緯度(<23.5o、23.5o-50o及>50o)地區二
             氧化碳通量變化..................................61
         4.1.3全球河口fCO2通量在季節上的變化.63
       4.2熱帶河流碳輸出量.....................................65
         4.2.1無機碳的輸出通量...............................67
         4.2.2有機碳的輸出通量...............................69
    五、結論.................................................................71
    六、參考文獻.........................................................73
    附錄一 Chen, C.T.A., Huang, T.H. and Fu, Y.H., 2012. Strong sources of CO2 in upper estuaries become sinks of CO2 in large river plumes. Current opinion in environmental sustainability, 4(2): 179-185 ............. 80
    附錄二 Huang, T.H., Fu, Y.H., Pan, P.Y. and Chen, C.T.A., 2012. Fluvial carbon fluxes in tropical rivers. Current opinion in environmental sustainability,
    4(2): 162-169 .................................................................. 87
    參考文獻 中文部分
    張勝騰,2003。淡水河河口水質與懸浮細泥之調查研究。國立中央大學水文科學研究所碩士論文,96頁。
    方天熹,2001。溶解態鋁在淡水河河口及近岸海域之分佈。台灣海洋學刊,39,93-104頁。
    孫毓璋、彭竟凱,2001。大漢溪流域水體環境中重金屬及營養鹽分佈的探討。台灣海洋學刊,39,105-120頁。
    謝蕙蓮,2001。由底棲群聚看淡水河河口生態品質。台灣海洋學刊,39,121-134頁。
    黃蔚仁,2003。淡水河系中上游河水中氮物種之時空變化。國立台灣大學海洋研究所碩士論文。
    莊竣皓,2007。淡水河流域鹼度、酸鹼值與主要離子之時空變化。國立中央大學水文科學研究所碩士論文,190頁。
    吳文雄、楊燦堯、劉聰桂,2005。台灣的岩石。遠足文化出版,205頁。
    陳培源,2006。台灣地質。台灣省應用地質技師公會,500頁。
    英文部分
    Abril, G. and Borges, A.V., 2004. Carbon dioxide and methane emissions from estuaries. Greenhouse Gases Emissions from Natural Environments and Hydroelectric Reservoirs: Fluxes and Processes. Springer, Berlin, Heidelberg, New York, Environmental Science Series, 187-207 pp.
    Aitkenhead, J.A. and McDowell, W.H., 2000. Soil C : N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochemical Cycles, 14(1): 127-138.
    Aldrian, E. et al., 2008. Spatial and seasonal dynamics of riverine carbon fluxes of the Brantas catchment in East Java. Journal of Geophysical Research-Biogeosciences, 113(G3): G03029.
    Berner, H., Vyplel, H., Schulz, G. and Stuchlik, P., 1983. Chemistry of pleuromutilins .9. Inversion of configuration of the methyl-group at carbon-6 in the tricyclic skeleton of the diterpene pleuromutilin. Monatshefte Fur Chemie, 114(10): 1125-1136.
    Borges, A.V., 2005. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries, 28(1): 3-27.
    Borges, A.V., Delille, B. and Frankignoulle, M., 2005. Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts. Geophysical Research Letters, 32(14): L14601.
    Brunet, F. et al., 2009. Terrestrial and fluvial carbon fluxes in a tropical watershed: Nyong basin, Cameroon. Chemical Geology, 265(3-4): 563-572.
    Burns, K.A., Brunskill, G., Brinkman, D. and Zagorskis, I., 2008. Organic carbon and nutrient fluxes to the coastal zone from the Sepik River outflow. Continental Shelf Research, 28(2): 283-301.
    Cai, W.J., 2011. Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial Carbon Incineration? Annual Review of Marine Science, 3(1): 123-145.
    Cai, W.J., Dai, M.H. and Wang, Y.C., 2006. Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis. Geophysical Research Letters, 33(12).
    Cai, W.J. et al., 2008. A comparative overview of weathering intensity and HCO3- flux in the world's major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers. Continental Shelf Research, 28(12): 1538-1549.
    Cai, W.J., Wang, Y.C. and Hodson, R.E., 1998. Acid-base properties of dissolved organic matter in the estuarine waters of Georgia, USA. Geochimica Et Cosmochimica Acta, 62(3): 473-483.
    Chen, C.T.A., Zhai, W. and Dai, M., 2008a. Riverine input and air–sea CO2 exchanges near the Changjiang (Yangtze River) Estuary: Status quo and implication on possible future changes in metabolic status. Continental Shelf Research, 28(12): 1476-1482.
    Chen, C.T.A., 2004. Exchanges of carbon in the coastal seas. In: M.R.R. C.B. Field (Editor), The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World, pp. 341-351.
    Chen, C.T.A. and Borges, A.V., 2009. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 56(8-10): 578-590.
    Chen, C.T.A., Huang, T.H. and Fu, Y.H., 2012. Strong sources of CO2 in upper estuaries become sinks of CO2 in large river plumes. Current opinion in environmental sustainability, 4(2): 179-185.
    Chen, C.T.A., K.K. Liu and MacDonald, R., 2003. Continental margin exchanges. In: M.J.R. Fasham (Editor), Ocean Biogeochemistry: a JGOFS Synthesis. Springer, pp. 53-97.
    Chen, C.T.A. et al., 2008b. Hydrogeochemistry and greenhouse gases of the Pearl River, its estuary and beyond. Quaternary International, 186: 79-90.
    Cole, J.J. et al., 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems, 10(1): 171-184.
    Dadson, S.J. et al., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967): 648-651.
    Dai, M., Yin, Z., Meng, F., Liu, Q. and Cai, W.-J., 2012. Spatial distribution of riverine DOC inputs to the ocean: an updated global synthesis. Current opinion in environmental sustainability, 4(2).
    de la Paz, M., Gomez-Parra, A. and Forja, J., 2007. Inorganic carbon dynamic and air-water CO2 exchange in the Guadalquivir Estuary (SW Iberian peninsula). Journal of Marine Systems, 68(1-2): 265-277.
    Degens, E.T., Kempe, S., Richey, J.E., Environment, I.C.o.S.U.S.C.o.P.o.t. and Programme, U.N.E., 1991. Biogeochemistry of major world rivers. Published on behalf of the Scientific Committee on Problems of the Environment (SCOPE) of the International Council of Scientific Unions (ICSU), and the United Nations Environment Programme (UNEP) by Wiley.
    Ducklow, H.W. and McCallister, S.L., 2004. The biogeochemistry of carbon dioxide in the coastal oceans. In: A.R. Robinson and K.H. Brink (Editors), The Global Coastal Ocean: Multiscale Interdisciplinary Processes. The Sea, Ideas and Observations on Progress in the Study of the Sea, 13. Cambridge, Harvard University Press, Cambridge, MA, pp.269-316.
    Durr, H.H. et al., 2011. Worldwide Typology of Nearshore Coastal Systems: Defining the Estuarine Filter of River Inputs to the Oceans. Estuaries and Coasts, 34(3): 441-458.
    Dyer, K.R., 1997. Estuaries: A Physical Introduction. Wiley & Sons Ltd, New York, pp. 195.
    Elliott, M. and McLusky, D.S., 2002. The need for definitions in understanding estuaries. Estuarine Coastal and Shelf Science, 55(6): 815-827.
    Fanning, K.A. and Pilson, M.E.Q., 1973. Spectrophotometric determination of dissolved silica in natural waters. Analytical Chemistry, 45: 136-140.
    Fekete, B.M., Vorosmarty, C.J. and Lammers, R.B., 2001. Scaling gridded river networks for macroscale hydrology: Development, analysis, and control of error. Water Resources Research, 37(7): 1955-1967.
    Frankignoulle, M., 1998. Carbon Dioxide Emission from European Estuaries. Science, 282(5388): 434-436.
    Gattuso, J.P., Frankignoulle, M. and Wollast, R., 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annual Review of Ecology and Systematics, 29: 405-434.
    Gran, G., 1952. Determination of the equivalence point in potentiometric titrations, Analyst, 77 pp.
    Guo, X.H., Dai, M.H., Zhai, W.D., Cai, W.J. and Chen, B.S., 2009. CO2 flux and seasonal variability in a large subtropical estuarine system, the Pearl River Estuary, China. Journal of Geophysical Research-Biogeosciences, 114.
    Hopkinson C. J., Smith E. M., del Giorgio P. A. and L., W.P.J., 2005. Estuarine respiration: an overview of benthic, pelagic and whole system respiration., In Respiration in Aquatic Ecosystems. Edited by del Giorgio PA, Williams PJL. , Oxford University Press, pp. 122-146.
    Houghton, R.A., 2007. Balancing the Global Carbon Budget. Annual Review of Earth and Planetary Sciences, 35(1): 313-347.
    Huang, T.H., Fu, Y.H., Pan, P.Y. and Chen, C.T.A., 2012. Fluvial carbon fluxes in tropical rivers. Current opinion in environmental sustainability, 4(2): 162-169.
    IGBP-DIS, 1998. SoilData(V.0) A program for creating global soil-property databases. IGBP Global Soils Data Task, France.
    IPCC, 2007. IPCC fourth assessment report climate change 2007. Intergovernmental Panel on Climate Change, Geneva.
    Jiang, L.Q., Cai, W.J. and Wang, Y.C., 2008. A comparative study of carbon dioxide degassing in river- and marine-dominated estuaries. Limnology and Oceanography, 53(6): 2603-2615.
    Kempe, S., 1995. CoastalSeas: a net source or sink of atmospheric carbon dioxide? LOICZ Report & Studies No.1, LOICZ, Texel, The Netherlands.
    Laruelle, G.G., Durr, H.H., Slomp, C.P. and Borges, A.V., 2010. Evaluation of sinks and sources of CO2in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophysical Research Letters, 37(15): L15607.
    Lerman, A., Wu, L.L. and Mackenzie, F.T., 2007. CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance. Marine Chemistry, 106(1-2): 326-350.
    Loh, P.S. et al., 2011. A comprehensive survey of lignin geochemistry in the sedimentary organic matter along the Kapuas River (West Kalimantan, Indonesia). Journal of Asian Earth Sciences, 43(1): 118-129.
    Ludwig, W., Amiotte-Suchet, P., Munhoven, G. and Probst, J.L., 1998. Atmospheric CO2 consumption by continental erosion: present-day controls and implications for the last glacial maximum. Global and Planetary Change, 17: 107-120.
    Ludwig, W., AmiotteSuchet, P. and Probst, J.L., 1996. River discharges of carbon to the world's oceans: Determining local inputs of alkalinity and of dissolved and particulate organic carbon. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule a-Sciences De La Terre Et Des Planetes, 323(12): 1007-1014.
    Mackenzie, F.T., Lerman, A. and Andersson, A.J., 2004. Past and present of sediment and carbon biogeochemical cycling models. Biogeosciences, 1(1): 11-32.
    Mackenzie, F.T., Lerman, A. and Ver, L.M.B., 1998. Role of the continental margin in the global carbon balance during the past three centuries. Geology, 26(5): 423-426.
    Masutomi, Y., Inui, Y., Takahashi, K. and Matsuoka, Y., 2009. Development of highly accurate global polygonal drainage basin data. Hydrological Processes, 23: 572-584.
    Meybeck, M., 1979. Concentrations des eaux fluviales en elements majeurs et apports en solution aux oceans. Revue Geologic Dynamique et Geographie Physique, 21: 215-246.
    Meybeck, M., 1982. Carbon, nitrogen, and phosphorus transport by world rivers. American Journal of Science, 282(4): 401-450.
    Meybeck, M., 1987. Globl chemical-weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287(5): 401-428.
    Meybeck, M., 1993. Riverine transport of atmospheric carbon - sources, global typology and budget. Water Air and Soil Pollution, 70(1-4): 443-463.
    Meybeck, M. and Ragu, A., 1996. River discharges to the oceans. An assessment of suspended solids, major ions and nutrients, GEMS-EAP.
    Meybeck, M. and Vorosmarty, C.J., 1999. Global transfer of carbon by rivers. Global change News letters, 37: 41974.
    Millero, F.J., 1974. Seawater as a Multicomponent Electrolyte Solution. In The Sea, 5. Wiley, New York, pp.78.
    Millero, F.J., 1995. Thermodynamics of the carbon dioxide system in the oceans. Geochimica Et Cosmochimica Acta, 59(4): 661-677.
    Millero, F.J., Graham, T.B., Huang, F., Bustos-Serrano, H. and Pierrot, D., 2006. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Marine Chemistry, 100(1-2): 80-94.
    Millero, F.J. et al., 1993. The use of buffers to measure the pH of seawater. Marine Chemistry, 44(2–4): 143-152.
    Milliman, J.D. and Meade, R.H., 1983. WORLD-WIDE DELIVERY OF RIVER SEDIMENT TO THE OCEANS. Journal of Geology, 91(1): 1-21.
    Moore, S., Gauci, V., Evans, C.D. and Page, S.E., 2011. Fluvial organic carbon losses from a Bornean blackwater river. Biogeosciences, 8(4): 901-909.
    Olivie-Lauquet, G., Allard, T., Bertaux, J. and Muller, J.P., 2000. Crystal chemistry of suspended matter in a tropical hydrosystem, Nyong basin (Cameroon, Africa). Chemical Geology, 170(1-4): 113-131.
    Pai, S.C., Yang, C.C. and Riley, J.P., 1990a. Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex. Analytica Chimica Acta, 229(1): 115-120.
    Pai, S.C., Yang, C.C. and Riley, J.P., 1990b. Formation kinetics of the pink azo dye in the determination of nitrite in natural-waters. Analytica Chimica Acta, 232(2): 345-349.
    Randerson, J.T., Chapin, F.S., Harden, J.W., Neff, J.C. and Harmon, M.E., 2002. Net ecosystem production: A comprehensive measure of net carbon accumulation by ecosystems. Ecological Applications, 12(4): 937-947.
    Rao, T.V.N., 2001. Time-dependent stratification in the Gauthami-Godavari estuary. Estuaries, 24(1): 18-29.
    Raymond, P.A. and Cole, J.J., 2001. Gas exchange in rivers and estuaries: Choosing a gas transfer velocity. Estuaries, 24(2): 312-317.
    Rixen, T. et al., 2008. The Siak, a tropical black water river in central Sumatra on the verge of anoxia. Biogeochemistry, 90(2): 129-140.
    Schlesinger, W.H. and Melack, J.M., 1981. Transport of organic-carbon in the worlds rivers. Tellus, 33(2): 172-187.
    Schlunz, B. and Schneider, R.R., 2000. Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux-and burial rates. International Journal of Earth Sciences, 88(4): 599-606.
    Shetye, S.R., 1999. Propagation of tides in the Mandovi and Zuari estuaries. Sadhana-Academy Proceedings in Engineering Sciences, 24: 5-16.
    Smith, S.M. and Hitchcock, G.L., 1994. Nutrient enhancement and phytoplankton growth in the surface waters of the Louisiana Bight. Estuaries, 17(4): 740-753.
    Strickland, J.D.H. and Parsons, T.R., 1972. A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada, Ottawa, pp.167.
    Suchet, P.A., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1038-1051.
    Sundar, D. and Shetye, S.R., 2005. Tides in the Mandovi and Zuari estuaries, Goa, west coast of India. Journal of Earth System Science, 114(5): 493-503.
    Syvitski, J.P.M., Vorosmarty, C.J., Kettner, A.J. and Green, P., 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308(5720): 376-380.
    Takahashi, T., 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8-10): 554-577.
    Takahashi, T. et al., 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8–10): 554-577.
    Thomas, H., Bozec, Y., Elkalay, K. and de Baar, H.J., 2004. Enhanced open ocean storage of CO2 from shelf sea pumping. Science, 304(5673): 1005-8.
    Tsunogai, S., Watanabe, S. and Sato, T., 1999. Is there a "continental shelf pump" for the absorption of atmospheric CO2 ? Tellus B, 51(3): 701-712.
    Vorosmarty, C.J., Fekete, B.M., Meybeck, M. and Lammers, R.B., 2000. Geomorphometric attributes of the global system of rivers at 30-minute spatial resolution. Journal of Hydrology, 237(1-2): 17-39.
    Wagner, W. and Pruss, A., 2002. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physical and Chemical Reference Data, 31(2): 387-535.
    Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. Journal of geophysical research, 97(C5): 7374-7382.
    Weiss, R.F., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2(3): 203-215.
    Zhai, W., Dai, M. and Guo, X., 2007. Carbonate system and CO2 degassing fluxes in the inner estuary of Changjiang (Yangtze) River, China. Marine Chemistry, 107(3): 342-356.
    口試委員
  • 洪佳章 - 召集委員
  • 洪慶章 - 委員
  • 王樹倫 - 委員
  • 莊秉潔 - 委員
  • 陳鎮東 - 指導教授
  • 口試日期 2012-05-15 繳交日期 2012-06-28

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫