Responsive image
博碩士論文 etd-0623120-133946 詳細資訊
Title page for etd-0623120-133946
論文名稱
Title
利用433 MHz自我注入鎖定雷達之穿牆生命偵測器
A Through-Wall Life Detector Using 433-MHz Self-Injection-Locked Radar
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
52
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-07-17
繳交日期
Date of Submission
2020-07-23
關鍵字
Keywords
穿牆雷達、自我注入鎖定雷達、生命探測器
through-wall radar, self-injection-locked radar, Life detector
統計
Statistics
本論文已被瀏覽 5756 次,被下載 0
The thesis/dissertation has been browsed 5756 times, has been downloaded 0 times.
中文摘要
本篇論文致力於發展基於自我注入鎖定雷達之生命探測器,此系統與傳統相比,具備低功耗及低複雜度之優勢,可望降低雷達硬體成本,並且使用433 MHz訊號而比相同發射功率之更高頻訊號有較強的穿透力、較低的傳播損耗及較大的覆蓋範圍。此外本論文提出藉由相移器消除雜波的方法,使系統不受牆壁反射雜波的影響,而達到系統穩定的效果。本系統操作原理乃由雷達發射一連續波訊號至目標物,經目標物反射回來的訊號注入到433 MHz壓控振盪器中,使該壓控振盪器產生一頻率調制訊號,該訊號經過五倍頻器注入到2.165 GHz的壓控振盪器,其輸出訊號再透過頻率解調器解調獲取生命徵象訊號。本論文核心射頻元件包括433 MHz 和 2.165 GHz兩不同頻率之壓控振盪器,前者為自我注入鎖定振盪器,用來提高連續波雷達的偵測靈敏度;後者為注入鎖定振盪器,具有窄頻濾波與高增益放大的功用。本系統實驗安排是以穿牆方式監測水泥牆後受測者在不同位置且不同姿態下的呼吸訊號,藉此判斷牆後是否具有生命徵象。
Abstract
This thesis is devoted to the development of life detectors based on self-injection-locked (SIL) radar. The system has the advantages of low power consumption and low complexity when compared to the traditional one, so it has high potential to reduce the cost of system hardware. Moreover, the system uses a 433 MHz signal to achieve better penetration capability, lower propagation loss, and wider coverage than higher frequency signals with the same transmit power. In addition, this thesis proposes a method of eliminating clutter by a phase shifter, so that the system is not affected by the clutter reflected by the wall and can function stably. The operating principle of this system is as follows: the radar transmits a continuous-wave (CW) signal to a target, and receives the signal reflected by the target. The received signal is injected into a 433 MHz voltage-controlled oscillator (VCO) to yield a frequency-modulated output signal. This output signal passes through a quintupler and is then injected into a 2.165 GHz VCO. A frequency demodulator demodulates the output signal of the 2.165 GHz VCO to obtain the vital-sign signal. The core RF components of this thesis includes the 433 MHz VCO and the 2.165 GHz VCO. The former serves as an SIL oscillator to improve the detection sensitivity of CW radar, while the latter functions as an injection-locked oscillator to provide narrow-band filtering and high-gain amplification. Finally, the through-wall monitoring experiments with the system was conducted to detect the respiration signal of a subject who was behind a concrete wall with different postures at different positions to determine whether there is a human life behind the wall.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
摘要 iv
Abstract v
表次 x
第一章 緒論 1
1.1 研究動機與背景 1
1-2 章節規劃 7
第二章 系統架構 8
2.1 自我注入鎖定雷達簡介 8
2.2 工作原理 9
2.3 振盪器規格介紹以及介紹 11
2.4 天線場型介紹 14
第三章 實驗設置與結果 17
3.1 零點偵測 17
3.2 天線間距的取決 21
3.3 牆對於系統的影響 22
3.4 雜波消除電路測試 23
3.5 相移器的應用 24
3.6 實驗驗證及系統靈敏度 26
3.7 實驗場景介紹 29
3.8 訊號處理流程圖及實驗結果 31
第四章 未來展望及結論 37
參考文獻 38
參考文獻 References
[1] M. I. Skolnik, Introduction to Radar System, 3rd ed. New York: McGraw-Hill, 2001.
[2] M. I. Skolnik, Radar Handbook, 3rd ed. New York: McGraw-Hill, 2008
[3] D. K. Barton, Radar System Analysis and Modeling, MI: Artech House, 2005.
[4] K. M. Chen, D. Misra, H. Wang, H. R. Chuang, and E. Postow, “An X-band microwave life-detection system,” IEEE Trans. Biomed. Eng., vol. BME-33, no. 7, pp. 697-701, Jul. 1986
[5] J. C. Lin, “Microwave sensing of physiological movement and volume change: a review,” Bioelectromagnetics, vol. 13, pp. 557-565, Apr. 1992
[6] K. M. Chen, Y. Huang, J. Zhang, and A. Norman, “Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier,” IEEE Trans. Biomed. Eng., vol. 27, pp. 105–114, Jan. 2000.
[7] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovac, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 838-848, Mar. 2004.
[8] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046-2060, May 2013
[9] C. Li and J. Lin, “Recent advances in Doppler radar sensors for pervasive healthcare monitoring,” in Proc. Asia-Pacific Microwave. Conf., Dec. 2010, pp. 283–290.
[10] R. J. Fontana, “Recent system applications of short-pulse ultra-wideband (UWB) technology,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 9, pp. 2087–2104, Sep. 2004.
[11] Z. Li, W. Li, H. Lv, Y. Zhang, X. Jing, and J. Wang, “A novel method for respiration-like clutter cancellation in life detection by dual-frequency IR-UWB radar,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2086–2092, May 2013
[12] E. C. Fear, J. Bourqui, C. Curtis, D. Mew, B. Docktor, and C. Romano, “Microwave breast imaging with a monostatic radar-based system: a study of application to patents,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2119-2128, May 2013
[13] C. Zhang, M. J. Kuhn, B. C. Merkl, A. E. Fathy, and M. R. Mahfouz, “Real-time noncoherent UWB positioning radar with millimeter range accuracy: theory and experiment,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 1, pp. 9–20, Jan. 2010.
[14] Y. Wang, Q. Liu, and A. E. Fathy, “CW and pulse-Doppler radar processing based on FPGA for human sensing applications,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 3097–4007, May 2013.
[15] B. Schleicher, I. Nasr, A. Trasser, and H. Schumacher, “IR-UWB radar demonstrator for ultra-fine movement detection and vital-sign monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2076–2085, May 2013.
[16] D. Zito, D. Pepe, M. Mincica, F. Zito, A. Tognetti, A. Lanatà, and D. D. Rossi, “SoC CMOS UWB pulse radar sensor for contactless respiratory rate monitoring,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 6, pp. 503-510, Dec. 2011
[17] H. G. Han, B. G. Yu, and T. W. Kim, “A 1.9mm-precision 20GS/s real-times sampling receiver using time-extension method for indoor localization,” in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2015, pp. 352–354.
[18] N. Anderson, K. Granhaug, J. A. Michaelsen, S. Bagga, H. A. Hjortland, M. R. Knutsen, T. S. Lande, and D. T. Wisland, “A 118mW 23.3GS/s dual-band 7.3GHz and 8.7GHz impulse-based direct RF sampling radar SoC in 55nm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2017, pp. 138–140.
[19] D. Yang, Z. Zhu, and B. Liang, ‘‘Vital sign signal extraction method based on permutation entropy and EEMD algorithm for ultra-wideband radar,’’ IEEE Access, vol. 7, pp. 178879–178890, 2019.
[20] L. B. Liu, Z. J. Liu, and B. E. Barrowes, ‘‘Through-wall bioRadiolocation with UWB impulse radar: observation, simulation and signal extraction,’’ IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 4, pp. 791-798, Dec 2011
[21] Li, W., Tan, B., Piechocki, R.J.: ‘Passive radar for opportunistic monitoring in E-health applications’, IEEE. J. Transl. Eng. Health. Med., 2018, 6, pp. 1–10
[22] F. K. Wang et al., “An injection-locked detector for concurrent spectrum and vital sign sensing,”in 2010 IEEE MTT-S Int. Microw. Symp. Dig, 2010, pp. 768-771.
[23] F. K. Wang, T. S. Horng, K. C. Peng, J. K.Jau, J. Y. Li and C. C. Chen, “Single-antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw. Theory and Techn., vol. 59, no. 12, pp. 3577-3587, Dec. 2011.
[24] F. K. Wang et al., “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112-4120, Dec. 2010.
[25] M. C. Tang, C. Y. Kuo, D. C. Wun, F. K. Wang and T. S. Horng, “A self-and mutually injection-locked radar system for monitoring vital signs in real time with random body movement cancellation, ” in IEEE Trans. Microw. Theory Techn.,vol. 64, no. 12, pp. 4812-4822, Dec. 2016.

[26] S. Guan, J. A. Rice, C. Li, and C. Gu, “Automated DC offset calibration strategy for structural health monitoring based on portable CW radar sensor,” IEEE Trans. Instrum. Meas., vol. 63, no. 12, pp. 3111–3118, Dec. 2014
[27] Xiao, Y., Lin, J., Boric-Lubecke, O., et al.: “Frequency tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the Ka-band”, IEEE Trans. Microw. Theory Tech., 2006, 54, (5), pp. 2023–2032
[28] F.-K. Wang, C.-H. Fang, T.-S. Horng, and K.-C. Peng “Concurrent vital sign and position sensing of multiple individuals using self-injection-Iocked tags and injection-locked I/Q receivers with arctangent demodulation,” IEEE Trans. Microw. Theory Tech., vol. 6 1, no. 12, pp. 4689-4699, Dec. 2013.
[29] H. R. Chuang, Y. F. Chen, and K. M. Chen, “Automatic clutter-canceller for microwave life-detection system,” IEEE Trans. Instrum. Meas., vol. 40, pp. 747–750, Aug. 1991.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.189.14.219
論文開放下載的時間是 校外不公開

Your IP address is 18.189.14.219
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code