Responsive image
博碩士論文 etd-0620120-150305 詳細資訊
Title page for etd-0620120-150305
論文名稱
Title
具備相位追蹤能力之生理感測雷達研究
Research on vital-sign radar with phase tracking capability
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-07-17
繳交日期
Date of Submission
2020-07-20
關鍵字
Keywords
鎖頻迴路、生理感測雷達、訊號雜訊比、相位雜訊
vital sign radar, frequency-locked loop, phase noise, SNR
統計
Statistics
本論文已被瀏覽 5753 次,被下載 0
The thesis/dissertation has been browsed 5753 times, has been downloaded 0 times.
中文摘要
本論文以2.4 GHz ISM頻帶作為操作頻率,運用鎖頻迴路機制(Frequency-locked loop, FLL)並結合主動式濾波器之生理感測器,提出相位正交追蹤技術以避免偵測零點(null point)的產生。雷達所偵測到之生理訊號為胸腔和心跳的微小擺幅所組成的相位變化,隨著量測距離的增加,其被雷達所偵測到之訊號強度亦會有所減少,此時若雷達無法提供穩定的本地振盪訊號(local oscillator, LO),或是能將所偵測的相位變化訊號放大,則生理訊號將有可能在接收訊號時被本地振盪源自身的相位雜訊所覆蓋而無法被偵測。鎖頻迴路能有效地在迴路頻寬內,將壓控振盪器(voltage-controlled oscillator, VCO)之相位雜訊抑制,使得振盪源本身輸出的頻率更加穩定,減少自身的相位雜訊。本論文將此特性運用在生理雷達系統上,不但可以降低系統雜訊還可以放大所偵測之生理訊號。這可提升雷達輸出訊號的訊號雜訊比(signal-to-noise ratio, SNR),因而增加生理訊號感測的靈敏度。實驗結果顯示,隨著目標物與生理感測器之間的距離從1 m增加至2 m,雷達系統之相位雜訊也在頻率偏移10 kHz下改善了約10 dB。而訊號雜訊比也有顯著改善。在待測物距雷達4 m之條件下,鎖頻迴路生理雷達之訊號雜訊比較傳統連續波(continuous wave, CW)雷達之訊號雜訊比多約18.3 dB。本論文利用鎖頻迴路生理雷達之相位正交追蹤技術,分別針對人體在隨機擺動、快速走動等狀況下量測生理訊號,量測結果顯示鎖頻迴路生理雷達皆能夠正確量測出待測人體之生理訊號,且與生理偵測綁帶之偵測結果相近。
Abstract
This thesis presents a 2.4 GHz ISM band vital-sign radar and exploits the frequency-locked loop (FLL) architecture with an active loop filter. To overcome the issue of null point, this work uses a novel quadrature-tracking technique. The vital sign detected by the radar is the phase variation due to tiny vibration of chest and heartbeat. As the range of detection increases, the strength of the signal that is received by the radar decreases. If the radar is not able to support more stable LO signal or enhance the strength of the received signal, the vital sign will be overwhelmed by the phase noise of the oscillator and can not be detected. The FLL can reduce the phase noise of voltage-controlled oscillator (VCO) in the loop bandwidth, it will make the VCO output frequency more stable with less phase noise.
This work takes advantage of the above features in the proposed radar system to amplify the detected vital sign and suppress the phase noise of the system. The output SNR will also be improved to increase the sensitivity and efficiency of the vital sign detection. The experimental results show that the phase noise of the radar system improves by about 10 dB at 10 kHz offset frequency when the distance between the target and radar increases to 2 m. Experimental results also demonstrate that the SNR of the wireless-FLL-based sensor is around 18.3 dB more than that of the conventional CW radar at a detection range of 4 m. This work also performs the vital sign detection when the human body is in random motion and running at the treadmill. The experimental results show that the detected vital sign is accurate when compared to the data of reference device.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vi
圖次 viii
表次 xi
第1章 緒論 1
1-1研究背景與動機 1
1-2 生理感測器的發展沿革 3
1-3章節規劃 8
第2章 運用鎖頻迴路之生理感測雷達原理 9
2-1 鎖頻迴路 9
2-2 運用鎖頻迴路之生理感測雷達 11
2-2-1 時域模型分析 12
2-2-2 頻域模型分析 14
2-2-3 訊號雜訊比分析 17
2-3 運用鎖頻迴路之生理感測雷達模擬 20
第3章 運用鎖頻迴路之生理雷達實驗 23
3-1 運用鎖頻迴路之生理感測雷達 23
3-2 相位雜訊及暫態響應實驗 26
3-3 相位追蹤實驗 28
3-4運用鎖頻迴路之生理雷達性能量測 29
3-4-1 運用致動器之量測實驗 29
3-4-2 人體生理訊號量測實驗 31
第4章 結論與未來展望 46
參考文獻 47
參考文獻 References
[1] J. C. Lin, “Non-invasive Microwave Measurement of Respiration,” Proc, IEEE, vol. 63, pp.1530, 1975.
[2] A. Droitcour, V. Lubecke, L. Jenshan, and O. Boric-Lubecke, “A microwave radio for Doppler radar sensing of vital signs,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 1, pp. 175–178, 2001
[3] F. Daum, “Radar handbook, 3rd edition (m.i. skolnik, ed; 2008) [book review],” IEEE Aerospace and Electronic Systems Magazine, vol. 23, pp. 41–41, May 2008.
[4] C. Z. Gu, J. Long, J. T. Huangfu, S. Qiao, W.Z. Cui, W. Ma, and L.X. Ran, “An instruments-built Doppler radar for sensing vital signs,” in Proc. 8th Int. Antennas, Propag., EM Theory Symp., pp. 1386–1389, 2008.
[5] Z. Xia, and Y. Zhang, “Dual-carrier noncontact vital sign detection with a noise suppression scheme based on phase-locked loop,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 11, pp. 4003-4011, Nov. 2016.
[6] M. Leib, W. Menzel, B. Schleicher, and H. Schumacher, “Vital signs monitoring with a UWB radar based on a correlation receiver,” in Proc. Eur. Conf. Antennas Propag., Apr. 2010.
[7] I. Immoreev, and T.-H. Tao, “UWB radar for patient monitoring,” IEEE Aerosp. Electron. Syst. Mag, vol. 23, no. 11, pp. 11-18, Nov. 2008.
[8] C. Li, and J. Lin, “Recent advances in Doppler radar sensors for pervasive healthcare monitoring,” in Proc. 22nd Asia-Pacific Microw. Conf., pp. 283-290, Dec. 2010.
[9] F.-K. Wang et al., “A novel vital-sign sensor based on a self-injection locked oscillator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 4112–4120, Dec. 2010.
[10] K. M. Chen, Y. Huang, J. Zhang, and A. Norman, “Microwave life-detection systems for searching human subjects under earthquake rubble and behind barrier,” IEEE Trans. Biomed.Eng., vol. 27, pp. 105-114, Jan. 2000.
[11] C. Li, X. Yu, C.-M. Lee, D. Li, L. Ran, and J. Lin, “High-sensitivity software-configurable 5.8-GHz radar sensor receiver chip in 0.13-um CMOS for noncontact vital sign detection,” IEEE Trans. Microw.Theory Tech., vol. 58, no. 5, pp. 1410–1419, May . 2010.
[12] Y. Xiao, J. Lin, O. Boric-Lubecke, and M. Lubecke, “Frequency-tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the Ka-band,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 5, pp. 2023–2032, May. 2006.
[13] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G.T. A. Kovacs, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 838–848, Mar. 2004.
[14] B. K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 1073–1079, May. 2007.
[15] Y. Yan, C. Li, and J. Lin, “Effects of I/Q mismatch on measurement of periodic movement using a doppler radar sensor,” in IEEE Radio Wireless Symp. Dig., pp. 196-199, Jan . 2010.
[16] I. Mostafanezhad, and O. Boric-Lubecke, “Benefits of coherent low-IF for vital signs monitoring using Doppler radar,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 10, pp. 2481-2487, Oct. 2014.
[17] A. Droitcour, O. Boric-Lubecke, and G. Kovacs, “Signal-to-noise ratio in Doppler radar system for heart and respiratory rate measurements,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 10, pp. 2498-2507, Oct. 2009.
[18] A. Wiesner, “A multifrequency interferometric CW radar for vital signs detection,” in IEEE Radar Conf. Dig., pp. 1–4, 2009.
[19] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046-2060, May. 2013.
[20] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng,J.-K. Jau, J.-Y. Li, and C.-C. Chen, “An injection-locked detector for concurrent spectrum and vital sign sensing,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 768–771, May. 2010.
[21] C.-J. Li, F.-K. Wang, T.-S. Horng, and K.-C. Peng, “A novel RF sensing circuit using injection locking and frequency demodulation for cognitive radio applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3143–3152, Dec. 2009.
[22] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Single-antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw.Theory Techn., vol. 59, no. 12, pp. 3577–3587, Dec. 2011.
[23] Andersen, E., Herleikson, and E.C. “RF signal generator single-loop frequency synthesis, phase noise reduction, and frequency modulation,” Hewlett Packard J., vol. 40, no.5, pp. 27–33. 1989
[24] D. B. Leeson, “A simple model of feedback oscillator noises spectrum,” Proc. IEEE, vol. 54, pp. 329-330, Feb. 1966.
[25] J. M. Ávila-Ruiz, L. Moreno-Pozas, E. Durán-Valdeiglesias, A. Moscoso-Mártir, I. Molina-Fernández, and J. de-Oliva-Rubio ,“Frequency locked loop architecture for phase noise reduction in wideband low-noise microwave oscillators,” IET Microw., Antennas Propag., vol. 7, no. 11, pp. 869–875, Aug. 2013.
[26] E. Ayranci , K. Christensen, and P. Andreani “Enhancement of VCO linearity and phase noise by implementing frequency locked loop,” Proc. EUROCON, Warsaw, Poland, pp. 2593– 2599, Sept. 2007.
[27] K.-C. Peng, C.-H. Lee, D.-G. Wang, F.-K. Wang, and T.-S. Horng, “An injection- and frequency-locked loop for reducing phase noise of wideband oscillators,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1374-1383, Mar. 2018.
[28] J. L. Stensby, Phase-Locked Loops: Theory and Applications, USA. New York: CRC, 1997.
[29] C. Li et al., “A review on recent progress of portable short-range noncontact microwave radar systems,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 5, pp. 1692-1706, May. 2017.
[30] C.-H. Tseng, L.-T. Yu, “Self-injection-locked radar sensor with active-integrated-antenna and differentiator-based demodulator for noncontact vital sign detection, “in Proc. IEEE Top. Conf. Sensors Sensor Netw. (WiSNet), pp. 27-29, Jan. 2018.
[31] P. H. Wu, J. K. Jau, C. J. Li, T. S. Horng, and P. Hsu, “Phase- and self-injection-locked radar for detecting vital signs with efficient elimination of DC offsets and null points,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 1, pp. 685-695, Jan. 2013.
[32] Hewlett Packard Company, Phase noise characterization of microwave oscillators, Product Note 11729C-2, 1985.
[33] S. Barzegar, A. Banai, and F. Farzaneh, “Sensitivity improvement of phase-noise measurement of microwave oscillators using if delay line based discriminator,” IEEE Microw. Wirel. Compon. Lett., vol. 26, no. 7, pp. 546–548, Jul. 2016.
[34] J. Gustrau, F. Fiechtner, and M. Hoffmann, “VCO Linearisation by Frequency Feedback,” Radio Frequency Integrated Circuits(RFIC) Symposium, June 1998, pp. 135–138.
[35] K-C Peng, S.-E. Chen, F-K. Wang, and T.-S. Horng,“Enhancement of vital-sign sensor signal-to-noise ratio using wireless frequency-locked loop,” in Proc. IEEE Sensors 2019, Montreal, Canada, 2019, pp. 1-3.
[36] J. Salmi, O. Luukkonen, and V. Koivunen, “Continuous-wave radar based vital sign estimation: Modeling and experiments,” in Proc. IEEE Radar Conf., Atlanta, GA, USA, May 2012, pp. 564–569
[37] C. Li, Y. Xiao, and J. Lin, “Experiment and spectral analysis of a low-power -band heartbeat detector measuring from four sides of a human body,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4464–4471, Dec. 2006.
[38] Y. Hong et al., “Noncontact proximity vital sign sensor based on PLL for sensitivity enhancement,” IEEE Trans. Biomed. Circuits Syst., vol. 8,no. 4, pp. 584–593, Aug. 2014.

[39] S. W. Kim, S. B. Choi, Y.-J. An, B.-H. Kim, D. W. Kim, and J.-G. Yook, “Heart rate detection during sleep using a flexible RF resonator and injection-locked PLL sensor,” IEEE Trans. Biomed. Eng.,vol. 62, no. 11, pp. 2568–2575, Nov. 2015.
[40] D. Girbau, A. M. Roldan, A. Ramos, and R. Villarino, ‘‘Remote sensing of vital signs using a Doppler radar and diversity to overcome null detection,’’ IEEE Sensors J., vol. 12, no. 3, pp. 512–518, Mar. 2012
[41] J. Lin and C. Li, “Wireless non-contact detection of heartbeat and respiration using low-power microwave radar sensor,” in Asia–Pacific Microw. Conf. Dig., 2007, pp. 1–4
[42] M. Mercuri, Y.-H. Liu, I. Lorato, T. Torfs, A. Bourdoux, and C. Van Hoof, “Frequency-tracking CW doppler radar solving small-angle approximation and null point issues in non-contact vital signs monitoring,”IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 3, pp. 671–680, Jun. 2017.
[43] M. Mercuri, Y.-H. Liu, A. Young, T. Torfs, A. Bourdoux, and C. Van hoof,“ Digital phase-tracking doppler radar for accurate displacement measurements and vital signs monitoring,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2017, pp. 1–4.
[44] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046–2060, May 2013.
[45] H.-R. Chuang, Y. F. Chen, and K.-M. Chen, “Automatic clutter-canceler for microwave life-detection systems,” IEEE Trans. Instrum. Meas., vol. 40, no. 4, pp. 747–750, Aug. 1991.
[46] C. Li and J. Lin, “Random body movement cancellation in Doppler radar vital sign detection,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12,pp. 3143–3152, Dec. 2008.
[47] C. Li and J. Lin, “Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection,” in IEEE MTT-S Int. Microw. Symp. Dig., Atlanta, GA, Jun. 2008, pp. 567–570.
[48] F.-K. Wang, S.-C. Su, M.-C. Tang, and T.-S. Horng, “Displacement monitoring system based on a quadrature self-injection-locked radar technology,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2017,pp. 1363–1366.
[49] C. Gu, G. Wang, Y. Li, T. Inoue, and C. Li, “A hybrid radar-camera sensing system with phase compensation for random body movement cancellation in Doppler vital sign detection,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4678–4688, Dec. 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.100.120
論文開放下載的時間是 校外不公開

Your IP address is 3.141.100.120
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code