博碩士論文 etd-0620107-163418 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 楊廣翔(KuongCheong Ieong) 電子郵件信箱 E-mail 資料不公開
畢業系所 資訊管理學系研究所(Information Management)
畢業學位 碩士(Master) 畢業時期 95學年第2學期
論文名稱(中) 利用技術分析比較不同股票市場之實證研究
論文名稱(英) The empirical study of applying Technical Analysis on DJI, HSI and Taiwan Stock Market
檔案
  • etd-0620107-163418.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:校內立即公開,校外一年後公開

    論文語文/頁數 英文/139
    統計 本論文已被瀏覽 5370 次,被下載 7811 次
    摘要(中) 股票市場在現今的資本市場上的角色日益重要,同時由於全球化時代的來臨,促進了全球資本的融通與流動的便利性。而股票市場的發達,引起了學術界的高度興趣與廣泛的研究,而股票預測也漸漸被各領域的研究者所重視,從而發展出兩個截然不同的股市預測方法:基本分析(fundamental analysis) 與技術分析 (technical analysis)。本研究的目的在於了解全球其中三個最有影響力的資本市場,包括: 台灣加權指數 (IDXWT)、香港恆生指數 (HSI) 與美國道瓊工業平均指數 (DJI)在使用技術分析的時候,對各股市有效的技術指標為何。本研究結合動態貝氏網路 (Dynamic Bayesian Network) 與技術分析技術,希望可以針對每一個市場找到一組或多組相對有效的技術指標,能夠指引技術分析投資者方向,從而解決現有大量技術指標造成投資人不容易選擇之問題,本研究基於王聖中“應用動態貝氏網路於投資決策支援"[Wan05] 之研究,透過預測不同的市場與加入不同的技術指標,望能得到更好的投資策略與投資報酬。 本研究總共分成三個實驗,實驗一為以台灣加權指數為我們的預測目標,實驗二以香港恆生指數而實驗三則把目標定在美國道瓊工業平均指數。每一個實驗皆以同樣的結構的動態貝氏網路,但不同的指標組合作為預測指標 (predictors)。 透過本研究之實驗結果發現,在台灣加權指數中,以十五天之移動平均(Moving Average) 作為趨勢判斷的情況下,共有兩組指標組合與動態貝氏網路組合能得到最好的投資報酬率,四年之總合投資報酬率為47.95%;當使用二十天之移動平均時,指標組合MTM ,MACD ,Support/ Resistant 之投資報酬率為60.21%;而香港恆生指數則以指標組合Support/ Resistant, MACD, KD 為最佳,四年之投資報酬率為60.06%;最後美國道瓊工業平均指數則以指標組合 MACD、MTM 與 RSI_20等五組組合最佳,四年之投資報酬皆為25.83%。以上之結果皆能打敗買入持有投資策略、相對強弱指標(RSI)與隨機指標(KD)。證明本方法加上其他指標後,能有效打敗市場普遍之操作方法,作為投資人的一個參考指標。
    摘要(英) Stock Market is always being the most important role in modern capital market. And Stock Market is becoming one the most popular investment tools these days. Because of the Globalization of capital markets, the spreading of capital becomes faster and easier. The development of capital markets evoke the interesting of scholars and the field of stock market prediction attract scholars and researchers from different background. There are two approaches of predicting stock market - fundamental analysis and technical analysis. The purpose of my work was to predict three stock markets in the world, namely Taiwan Weighted Index (IDXWT), Hong Kong Hang Seng Index (HSI) and Dow Jones Industrial Average (DJI) using technical analysis and Dynamic Bayesian Network (DBN).This thesis is based on Wang’s thesis [Wan05] “Investment Decision Support with Dynamic Bayesian Networks”. According to different characteristic of 3 stock markets, we divide 3 different markets into 3 experiments. For each market, we expect we can find the best indicators and trading signals. The first experiment involves Taiwan Weighted Index as our prediction target; the second one uses Hong Kong Hang Seng Index and the third experiment employs Dow Jones Industrial Average. As a result, Taiwan Stock market (both 15-day and 20-day Moving Average)can make higher returns than buy-and-hold, RSI_6 and KD. And we also have the same conclusion of Hang Seng Index and Dow Jones Industrial Average. The best return from 15-day MA and 20-day MA of Taiwan Stock market is 47.95% and 60.21%, respectively. Moreover, the best result of Hang Seng Index is 60.06% for 4 years and 25.83% for Dow Jones Industrial Average. All of the best results can make higher returns than each of their buy-and-hold, RSI_6 and KD. In the conclusion, we may say that this paper can provide a direction to investors while they are using these technical indicators to predict these particular stock markets.
    關鍵字(中)
  • 資料探勘
  • 動態貝氏網路
  • 股票預測
  • 技術分析
  • 關鍵字(英)
  • stock market prediction
  • technical analysis
  • dynamic bayesian network
  • data mining
  • 論文目次 Table of Contents Abstract....................................................................................i
    中文摘要................................................................................iii
    Table of Contents................................................................v
    Lists of figures....................................................................vii
    Lists of tables....................................................................viii
    1. Introduction.....................................................................1
    1.1 Background..................................................................1
    1.2 Motivations and Objective..........................................3
    1.3 Problem Description..................................................4
    2. Literature Review..........................................................6
    2.1 Technical Analysis.....................................................6
    2.2 Overview of Efficient Market Hypothesis................8
    2.3 Overview of Data mining technique in Stock market...............................................................................10
    2.3.1 Artificial neural network........................................10
    2.3.2 Generic Algorithms................................................11
    2.3.3 Other data mining technique for predicting stock market................................................................................12
    2.4 Overview of Bayesian Network and Dynamic Bayesian Network...........................................................13
    2.4.1 Representation......................................................13
    2.4.2 Inference and Learning........................................14
    2.4.3 Representation of DBN........................................15
    2.4.4 Inference and Learning in DBN..........................17
    2.5 Related Work.............................................................18
    3. Concept model and experimental design..............20
    3.1 Wang’s concept model and results......................21
    3.1.1 Signaling theory of Wang.....................................21
    3.1.2 Concept model......................................................29
    3.1.3 Summary of Wang’s work...................................30
    3.2 Parameters of experiment......................................31
    3.2.1 Stock markets study.............................................31
    3.2.2 Indicators study.....................................................32
    3.3 Introduction of experiments...................................33
    4. Experimental design & results................................37
    4.1 Experimental design...............................................38
    4.1.1 Experiment 1 (Taiwan Stock market)................38
    4.1.2 Experiment 2 (Hong Kong Stock market).........39
    4.1.3 Experiment 3 (Dow Jones Industrial Average)............................................................................39
    4.2 Experimental results...............................................40
    4.2.1 Generalizing configurations...............................40
    4.2.2 Indicator set configuration and combination...41
    4.2.3 The results of experiment 1 (Taiwan Stock market)..............................................................................42
    4.2.4 The results of experiment 2 (Hong Kong Stock market)..............................................................................79
    4.2.5 The results of experiment 3 (Dow Jones Industrial Average)..........................................................91
    4.3 Discussions of experimental results..................106 4.3.1 Dynamic Bayesian Network as a modern data mining tool for predicting stock market.....................106
    4.3.2 Effect of different input indicators on prediction performance...................................................................106
    4.3.3 Effect of span size of MA to determinate the trend of different stock markets............................................109
    5. Conclusions and future research.........................110
    5.1 Findings and conclusion......................................111
    5.2 Contribution.............................................................112
    5.3 Limitation and further research...........................112
    6. References................................................................114
    Appendix A Complete indicator set being used in this paper..................................................................................i
    Appendix B ......................................................................iv
    Appendix C.......................................................................v
    Appendix D......................................................................vii
    參考文獻 [Bis77] H.I Bishara, “Establishing A Modified Dow Theory for Canada and Testing Its Buy
    and Sell Signals Against A Buy and Hold Strategy,” Akron Business and
    Economic Review, pp.43-51, Winter 1977.
    [BC95] H. Bessembinder, K. Chan, “The profitability of technical trading rules in the Asian
    stock markets”, Pacific-Basin Finance Journal, 3:257-284, 1995
    [BC98] H. Bessembinder, K. Chan, “Market efficiency and the returns to technical analysis. “,
    Financial Management, 27, 5–17, 1998
    [BLL92] W. Brock, J. Lakonishok and B. LeBaron, “Simple technical trading rules and the
    stochastic properties of stock returns”, The Journal of Finance, XLVII:5, 1992
    Dec.
    [CC00] J.A. Coutts & K.C Cheung, “Trading rules and stock returns: some preliminary short
    run evidence from the Hang Seng 1985-1997”, Applied Financial Economics,
    10:579-586, 2000
    [CC01]J.A. Coutts & K.C. Cheung, “A note on weak form market efficiency in security
    prices: evidence from the Hong Kong stock exchange”, Applied Economics
    Letters, 8:407-410, 2001
    [CH03] M. Chen & Y. Hong, “Has Chinese Stock Market become efficient? Evidence from a
    new approach”, Lecture Notes on Computer Science 2658:90-98, 2003
    [CHY+97] S. T. Chou, H. Hsu, C. Yang & F. Lai, “A stock selection DSS combining
    AI and technical analysis”, Annals of Operations Research 75:335 –353, 1997
    [CLD03] A. Chen, M.T. Leung & H. Daouk, “Application of neural networks to an emerging
    financial market: forecasting and trading the Taiwan Stock Index”, Computers &
    Operations Research, 30:901-923, 2003
    [Dra98] N. Drakos, “From A General Architecture for Supervised Classification of
    Multivariate Time Series”, technical report, 1998.
    [Fam65] E.F. Fama, “The Behavior of Stock-Market Prices”, The Journal of Business, 38:1,
    34-105, 1965
    [Fam70] E.F. Fama, “Efficient capital markets: a review of theory and empirical work”, The
    Journal of Finance, 25:2, pp. 383-417, 1970
    [Fam91] E.F. Fama, “Efficient capital market: II”, The Journal of Finance 46, p1575-1617,
    1991.
    [FGH+97] N. Friedman, M. Goldszmidt, D. Heckerman, and S. Russell, “Challenge: Where
    is the impact of Bayesian networks in learning?”, In Proceedings of the Fifteenth
    International Joint Conference on Artificial Intelligence, Morgan Kaufmann
    Publishers, 1997.
    [FGS05] F. Fernandez-Rodriguez, C. Gonzalez-Martel & S. Sosvilla-Rivero, “Optimization
    of technical rules by genetic algorithms: evidence from the Madrid stock market”,
    Applied Financial Economics, 15:773-775, 2005
    [FX03] Y.Fang & D.Xu, “The predictability of asset returns: an approach combining
    technical analysis and time series forecasts”, International Journal of forecasting,
    19:369-385, 2003
    [GW83] David A. Glickstein, and Rolf E. Wubbels, “Dow Theory is Alive and Well,”
    Journal of Portfolio Management, spring 1983, pp.28-32.
    [HK01] Jiawei Han, Micheline Kamber, Data mining: concepts and techniques, CA:
    academic press, 2001
    [HLS00] H. Hong, T. Lim, J. Stein, “Bad news travels slowly: size, analyst coverage, and the
    profitability of momentum strategies”, The Journal of Finance LV (1): 265– 295,
    2000.
    [HS99] H. Hong, J. Stein, “A unified theory of under-reaction, momentum trading, and
    overreaction in asset markets”, The Journal of Finance LIV (6) (1999) 2143–
    2184.
    [HMW95] D. Heckman, A. Mamdani, and M. Wellman, “Real-world applications of
    Bayesian Networks”, Communications of ACM, 38(3): 24-26, 1995.
    [HW95] D. Heckman and M. Wellman, “Bayesian Networks”, Communications of ACM,
    38(3): 27-30, 1995.
    [Jan04] Jangmin O et al, “Stock Trading by Modeling Price Trend with Dynamic Bayesian
    Networks”, In Proceedings of IDEAL 2004, 2004.
    [Jen01] Finn V. Jensen, “Bayesian Networks and Decision Graphs”, Springer press, 2001
    [Kan01] Angelos Kanas, “Neural network linear forecasts for stock returns”, International
    Journal of Finance and Economics, 6:245-254, 2003
    [Kim03] K. Kim, “Financial time series forecasting using support vector machines”,
    Neurocomputing, 55: 307-319, 2003.
    [KR02] J. Korczak, P. Roger, “Stock timing using genetic algorithms”, Appl. Stochastic
    Models Bus. Ind., 18:121-134, 2002
    [Lei02] W. Leigh et al, “Forecasting the NYSE composite index with technical analysis,
    pattern recognizer, neural network, and genetic algorithm”, Decision support
    system, Vol. 32, 2002.
    [Lam04] Monica Lam, “Neural network techniques for financial performance prediction:
    integrating fundamental and technical analysis”, Decision Support Systems,
    37:567-581, 2004
    [Luc03] Bernd Lucke, “Are technical trading rules profitable? Evidence for
    head-and-shoulder rules”, Applied Economics, 35:33-40, 2003
    [LM88] Lo, Andrew W., and A. Craig MacKinlay, “Stock market prices do not follow random
    walks: evidence from a simple specification test”, Rev. Fin., 1:41-66, 1988
    [LM01] Lo, Andrew W., and A. Craig MacKinlay , A Non-Random Walk down Wall Street ,
    Princeton University Press, Princeton, N.J. , 2001
    [LT04] E.J.A. Lima & B.M. Tabak, “Tests of the random walk hypothesis for equity markets:
    evidence from China, Hong Kong and Singapore”, Applied Economic Letters,
    11:255-258, 2004
    [Mal73] B.G Malkiel, A random walk down Wall Street, New York: W.W. Norton & Company,
    1973
    [Mal90] B.G Malkiel, A random walk down Wall Street, the 5th edition, New York: W.W.
    Norton & Company, 1990
    [MLL00] Debby M.Y. Mok, K. Lam and W. Li, “Using Daily High/Low Time to Test for
    Intraday Random Walk in Two Index Futures Markets”, Review of Quantitative
    Finance and Accounting, 14:4, Jun2000
    [Mur98] K. P. Murphy, “A Brief Introduction to Graphical Models and Bayesian Networks”,
    http://www.ai.mit.edu/~murphyk/Bayes/bayes.html, 1998.
    [Mur02] K.P. Murphy, “Dynamic Bayesian Networks: Representation, Inference and
    Learning”, Doctorial Philosophy in Computer Science of UC Berkeley, 2002.
    [Pea88] J. Pearl, “Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
    Inference”, San Mateo, CA: Morgan Kaufmann, 1988.
    [PR00] J. Pearl and S. Russell, “Bayesian Networks”, Technical report, 2000.
    [PSV04] J.Potvin, P. Soriano, M. Vallee, “Generating trading rules on the stock markets with
    genetic programming”, Computers & Operations Research, 31:1033-1047, 2004
    [RN95] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 2nd edition,
    Prentice Hall Series in Artificial Intelligence, Englewood Cliffs, New Jersey,
    1995.
    [Sai95] A. Saitta, “Using Dow Theory to Catch Trends,” Futures, October 1995, pp.46-48.
    [SAH03] Armin Shmilovici , Yael Alon-Brimer and Shmuel Hauser ,"Using a Stochastic
    Complexity Measure to Check the Efficient Market Hypothesis”, Computational
    Economics, 22:2-3, 273 – 284, 2003
    [Sco03] M. Scott, “Charles Dow’s Six Secrets to Market Success, Applying the Dow Theory
    to Today’s Markets”, Alchemist issue 30, 2003.
    [SG05] Cyril Schoreels, Jonathan M. Garibaldi, “A Comparison of Adaptive and Static
    Agents in Equity Market Trading”, Proceedings of the 2005 IEEE/WIC/ACM
    International Conference on Intelligent Agent Technology (IAT’05), 2005
    [Sim00] R. Simutis, “Fuzzy logic based stock trading system”, Proceedings of the
    IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for
    Financial Engineering (CIFEr), 2000.
    [Smy98] P. Smyth, “Belief networks, hidden Markov models, and Markov random fields: a
    unifying view”, Pattern Recognition Letters, 1998.
    [Sum85] L.H. Summers, “Does the stock market rationally reflect fundamental values?” , The
    Journal of finance, 41:3, July 1986
    [Tay01] F. E. H. Tay et al, “Application of support vector machines in financial time series
    forecasting”, Omega International Journal of Management Science, 2001.
    [TED03] Suraphan Thawornwong, David Enke and Cihan Dagli, “Neural Networks as a
    Decision Maker for Stock Trading: A Technical Analysis Approach”, International
    Journal of Smart Engineering System Design, 5:4, 313-325, Oct-Dec 2003
    [VBH+04] Massimiliano Versace, Rushi Bhatt, Oliver Hinds and Mark Shiffer, “Predicting
    the exchange traded fund DIA with a combination of genetic algorithms and
    neural networks”, Expert Systems with applications, 27:3, 417-425, Oct 2004
    [Wan05] S.C Wang, Investment Decision Support with Dynamic Bayesian Networks, master
    thesis of National Sun Yat-sen University, Taiwan, 2005.
    [Whi88] H. White, “Economic prediction using neural networks: The case of IBM stock daily
    returns”, In IEEE International Conference on Neural Networks, San Diego,
    P451-459, San Diego, 1988.
    [WW02] X. Wang and Z. Wang, “Stock market time series data mining based on regularized
    neural network and rough set”, Proceeding of International Conference of
    Machine Learning and Cybernetics 2002, Vol. 1, P315~318, 2002.
    [YTP99] Jingtao Yao, Chew Lim Tan and Hean-lee Poh, “Neural networks for technical
    analysis : a study on KLCI”, International Journal of Theoretical and Applied
    Finance, 2:2 221-241, 1999
    [Wan03]王盈傑,”台灣股市動量策略與反向策略之整合研究”, 中正經濟研究所, 2004.
    [Lee04] 李怡恬,”效率市場假說之實證研究-以亞太地區股市為例”, 銘傳管科所, 2004.
    [Hwa01] 黃怡芬, ”道氏理論、濾嘴法則與買入持有策略在台灣股市投資績效之比較”, 成功大學企業管理研究所碩士論文, 2001.
    [yip03] 葉明威, “應用資料探勘技術分析股市漲跌型態之研究” ,中山大學資訊管理研究
    所碩士論文, 2003.
    [Tse03] 曾耀田, “技術分析對台灣股票型基金報酬之實證研究”, 朝陽科技大學財務金
    融研究所碩士論文, 2003.
    口試委員
  • 李偉柏 - 召集委員
  • 蔡玉娟 - 委員
  • 陳耀宗 - 委員
  • 鄭炳強 - 指導教授
  • 陳嘉玫 - 指導教授
  • 口試日期 2007-06-08 繳交日期 2007-06-20

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫