Responsive image
博碩士論文 etd-0618119-131912 詳細資訊
Title page for etd-0618119-131912
論文名稱
Title
運用鎖頻迴路技術之生理感測器
A Vital-Sign Sensor using Frequency-Locked Loop Technique
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
57
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2019-07-08
繳交日期
Date of Submission
2019-07-18
關鍵字
Keywords
生理訊號、抑制相位雜訊、雷達系統、訊雜比、鎖頻迴路
signal-to-noise ratio, suppress phase noise, radar system, frequency-locked loop, vital sign
統計
Statistics
本論文已被瀏覽 5766 次,被下載 0
The thesis/dissertation has been browsed 5766 times, has been downloaded 0 times.
中文摘要
本論文實現了一操作於2.4 GHz,運用鎖頻迴路機制(frequency-locked loop, FLL)改善雷達訊雜比(signal-to-noise ratio, SNR)之非接觸生理感測系統。生理訊號為胸腔和心跳的微小擺幅所組成的相位變化,隨著量測距離的增加,其被雷達所偵測到的相位變化量亦會有所減少,此時若雷達無法提供穩定的振盪源訊號,或是能將所偵測的相位變化訊號放大,則生理訊號將有可能被振盪源自身的頻率偏移所覆蓋,而無法被偵測。鎖頻迴路能有效地在迴路頻寬內,將壓控振盪器之相位雜訊抑制,使得振盪源本身輸出的頻率更加穩定,減少自身的頻率偏移量。本論文將此特性運用在改善雷達系統上,得到其可以同時放大載波因調制訊號所引起的頻率偏移量、及降低迴路雜訊的效果,使雷達輸出訊號的訊雜比更好,改善了一般雷達訊雜比不足的缺點,將量測呼吸心跳的有效距離拉長至5 m以上,達到更好的生理訊號量測靈敏度。
Abstract
This thesis presents a non-contact vital sign sensing system that use a frequency- locked loop (FLL) to improve the signal-to-noise ratio (SNR). The vital signs are the phase change caused by the small movement of the chest. The small movement comes from the respiration and heartbeats.
Generally, the detected vital signs degraded as the measurement distance increases. Under this condition, the detected vital sign will probably be cover by the phase noise of radar. The FLL can efficiently suppress the phase noise of the voltage-controlled oscillator (VCO) within the bandwidth of FLL, so that the frequency of the oscillation source can be more stable, and reduce its own frequency deviation. This thesis utilize this characteristic to improve the radar system. Besides, the FLL structure can simultaneously amplify the vital-sign signal, and reduce the phase noise of the radar system. Then make the SNR of the radar system better. These advantages make that the effective detection distance of the radar is extended to more than 5 m.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vi
圖次 viii
表次 x
第一章 緒論 1
1-1研究背景與動機 1
1-2 生理感測器的沿革 2
1-3章節規劃 6
第二章 鎖頻迴路改善雷達SNR分析 8
2-1 簡易雷達系統中的雜訊來源 8
2-2 鎖頻迴路抑制迴路相位雜訊的機制 10
2-3 運用鎖頻迴路技術之生理感測器分析 14
2-3-1 鎖頻迴路的電路架構分析 14
2-3-2 生理感測器穩定度分析 20
2-3-3使用ADS模擬感測器系統之效應 22
第三章 運用鎖頻迴路之生理雷達實驗 24
3-1運用鎖頻迴路技術降低壓控振盪器輸出之相位雜訊 24
3-2 雷達靈敏度實驗 27
3-3 使用制動器及人體測試生理雷達性能 31
3-3-1 實驗架設及解調方法介紹 31
3-3-2量測制動器擺幅 32
3-3-3量測生理訊號之實測 36
第四章 結論與未來展望 41
參考文獻 42
參考文獻 References
[1] J. C. Lin, “Non-invasive Microwave Measurement of Respiration,” Proc, IEEE, vol. 63, p1530, 1975.
[2] A. Droitcour, V. Lubecke, L. Jenshan, and O. Boric-Lubecke, “A microwave radio for Doppler radar sensing of vital signs,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 1, pp. 175–178, 2001
[3] F. Daum, “Radar handbook, 3rd edition (m.i. skolnik, ed; 2008) [book review],” IEEE Aerospace and Electronic Systems Magazine, vol. 23, pp. 41–41, May 2008.
[4] C. Z. Gu, J. Long, J. T. Huangfu, S. Qiao, W.Z. Cui, W. Ma, and L.X. Ran, “An instruments-built Doppler radar for sensing vital signs,” in Proc. 8th Int. Antennas, Propag., EM Theory Symp., pp. 1386–1389, 2008.
[5] Z. Xia, and Y. Zhang, “Dual-carrier noncontact vital sign detection with a noise suppression scheme based on phase-locked loop,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 11, pp. 4003-4011, Nov. 2016.
[6] M. Leib, W. Menzel, B. Schleicher, and H. Schumacher, “Vital signs monitoring with a UWB radar based on a correlation receiver,” Proc. Eur. Conf. Antennas Propag., Apr. 2010.
[7] I. Immoreev, and T.-H. Tao, “UWB radar for patient monitoring,” IEEE Aerospace and Electronic Systems Magazine, vol.23,no.11, pp.11-18, Nov. 2008.
[8] C. Li, and J. Lin, “Recent advances in Doppler radar sensors for pervasive healthcare monitoring,” Proc. 22nd Asia-Pacific Microw. Conf., pp. 283-290, Dec. 2010.
[9] F.-K. Wang et al., “A novel vital-sign sensor based on a self-injection locked oscillator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12,pp. 4112–4120, Dec. 2010.
[10] K. M. Chen, Y. Huang, J. Zhang, and A. Norman, “Microwave life-detection systems for searching human subjects under earthquake rubble and behind barrier,” IEEE Trans. Biomed.Eng., vol. 27, pp. 105-114, Jan. 2000.
[11] C. Li, X. Yu, C.-M. Lee, D. Li, L. Ran, and J. Lin, “High-sensitivity software-configurable 5.8-GHz radar sensor receiver chip in 0.13-um CMOS for noncontact vital sign detection,” IEEE Trans. Microw.Theory Tech., vol. 58, no. 5, pp. 1410–1419, May . 2010.
[12] Y. Xiao, J. Lin, O. Boric-Lubecke, and M. Lubecke, “Frequency-tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the Ka-band,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 5, pp. 2023–2032 ,May. 2006.
[13] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G.T. A. Kovacs, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 838–848, Mar. 2004.
[14] B. K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation
with DC offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 1073–1079, May. 2007.
[15] Y. Yan, C. Li, and J. Lin, “Effects of I/Q mismatch on measurement of periodic movement using a doppler radar sensor,” IEEE Radio Wireless Symp., pp. 196-199, Jan . 2010.
[16] I. Mostafanezhad, and O. Boric-Lubecke, “Benefits of coherent low-IF for vital signs monitoring using Doppler radar,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 10, pp. 2481-2487, Oct. 2014.
[17] A. Droitcour, O. Boric-Lubecke, and G. Kovacs, “Signal-to-noise ratio in Doppler radar system for heart and respiratory rate measurements,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 10, pp. 2498-2507, Oct. 2009.
[18] A. Wiesner, “A multifrequency interferometric CW radar for vital signs detection,” in IEEE Radar Conf. Dig., pp. 1–4, 2009.
[19] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046-2060, May. 2013.
[20] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng,J.-K. Jau, J.-Y. Li, and C.-C. Chen, “An injection-locked detector for concurrent spectrum and vital sign sensing,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 768–771, May. 2010.
[21] C.-J. Li, F.-K. Wang, T.-S. Horng, and K.-C. Peng, “A novel RF sensing circuit using injection locking and frequency demodulation for cognitive radio applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3143–3152, Dec. 2009.
[22] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Single-antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw.Theory Techn., vol. 59, no. 12, pp.3577–3587, Dec. 2011.
[23] Andersen, E., Herleikson, and E.C.: ‘RF signal generator single-loop frequency synthesis, phase noise reduction, and frequency modulation’, Hewlett Packard J., 1989, 40, (5), pp. 27–33.
[24] D. B. Leeson, “A simple model of feedback oscillator noises spectrum,” Proc. IEEE, vol. 54, pp. 329-330, Feb. 1966.
[25] J. M. Ávila-Ruiz, L. Moreno-Pozas, E. Durán-Valdeiglesias, A. Moscoso-Mártir, I. Molina-Fernández, and J. de-Oliva-Rubio ,“Frequency locked loop architecture for phase noise reduction in wideband low-noise microwave oscillators,” IET Microw., Antennas Propag., vol. 7, no. 11, pp. 869–875, 2013.
[26] E. Ayranci , K. Christensen, and P. Andreani “Enhancement of VCO linearity and phase noise by implementing frequency locked loop,” Proc. EUROCON, Warsaw, Poland, pp. 2593– 2599, Sept. 2007.
[27] K.-C. Peng, C.-H. Lee, D.-G. Wang, F.-K. Wang, and T.-S. Horng, “An injection- and frequency-locked loop for reducing phase noise of wideband oscillators,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1374-1383, Mar. 2018.
[28] J. L. Stensby, Phase-Locked Loops: Theory and Applications, New York:CRC, 1997.
[29] C. Li et al., “A review on recent progress of portable short-range noncontact microwave radar systems,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 5, pp. 1692-1706, May. 2017.
[30] C.-H. Tseng, L.-T. Yu, “Self-injection-locked radar sensor with active-integrated-antenna and differentiator-based demodulator for noncontact vital sign detection, “ Proc. IEEE Top. Conf. Sensors Sensor Netw. (WiSNet), pp. 27-29, Jan. 2018.
[31] P. H. Wu, J. K. Jau, C. J. Li, T. S. Horng, and P. Hsu, “Phase- and self-injection-locked radar for detecting vital signs with efficient elimination of DC offsets and null points,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 1, pp. 685-695, Jan. 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2024-07-18
校外 Off-campus:開放下載的時間 available 2024-07-18

您的 IP(校外) 位址是 18.222.22.244
現在時間是 2024-04-20
論文校外開放下載的時間是 2024-07-18

Your IP address is 18.222.22.244
The current date is 2024-04-20
This thesis will be available to you on 2024-07-18.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2024-07-18

QR Code