Responsive image
博碩士論文 etd-0610119-125502 詳細資訊
Title page for etd-0610119-125502
論文名稱
Title
2.4 GHz數位波束成型都卜勒雷達之實現與生理監測應用
Implementation of 2.4 GHz Digital Beamforming Doppler Radar for Monitoring Vital Signs
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2019-07-08
繳交日期
Date of Submission
2019-07-10
關鍵字
Keywords
生理監測、多目標追蹤、Wi-Fi、相位陣列、數位式波束成型、都卜勒雷達
multi-target tracking, Wi-Fi, vital signs monitoring, phased array, Doppler radar, Digital beamforming
統計
Statistics
本論文已被瀏覽 5733 次,被下載 0
The thesis/dissertation has been browsed 5733 times, has been downloaded 0 times.
中文摘要
本篇論文致力於大範圍的人體追蹤與生理監測,透過相位陣列天線與都卜勒雷達,並結合數位波束成型來實現目的。被動式雷達,意即發射訊號源不從雷達自身產生,是以接收外部訊號來做為發射訊號,本論文將會先以訊號產生器產生連續波訊號源,來驗證實驗可行性,再以外部的Wi-Fi通訊波來做為發射訊號,實現被動雷達的架構。本論文是以接收端解調後的基頻訊號,來做為訊號抵達方向判斷的參考依據。首先校正初始位置後,人體因位於不同角度位置,導致反射訊號抵達各路天線會有不同的相位差,利用此相位差即可推算出人體所在位置的角度,並將帶有心肺運動資訊的反射訊號,乘上角度的權重並合成一路訊號後,即可達到人體位置追蹤以及生理訊號監測。此外電路及環境造成的直流準位偏移,會導致訊號抵達方向判斷的誤差,因此本論文使用兩種方式來進行直流準位的去除,皆能有效改善誤差產生。最後將會以實驗結果來探討目前所遇到的困境,提出此架構尚需改善之處,以提高未來應用的發展性。
Abstract
This thesis is devoted to human tracking and vital signs monitoring using a digital beamforming Doppler radar. Passive radar receives the external signal as the transmit signal. The radar of this work uses the continuous-wave signal from the signal generator to verify the experimental feasibility, and then adopts the Wi-Fi signal as the transmit signal to implement the passive radar architecture. The radar relies on baseband processing to detect the direction of the arrived signal. The subject locates at different positions, causing the reflected signal from the subject to reach each antenna with different phase differences. Using this phase difference, the direction of the subject can be estimated and his/her cardiopulmonary movement can be detected. After weighting the phase difference signals and then combining them, the radar can achieve human tracking and vital signs monitoring. However, the DC offset caused by the circuit and clutter often produces the error of direction. Therefore, this work uses two methods to remove the DC offset for reducing the error of direction. Finally, the experimental results are demonstrated and discussed to explore the limitations of this radar architecture and possible improvements for future applications.
目次 Table of Contents
目錄
論文審定書 i
論文公開授權書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vi
圖次 viii
表次 xi
第一章 序論 1
1.1 研究背景與動機 1
1.2 都卜勒雷達簡介與應用 2
1.3 波束成型簡介 6
1.4 章節規劃 8
第二章 波束成型於生理監測的應用 10
2.1 前言 10
2.2 相位陣列簡介 10
2.3 陣列天線設計 14
2.4.1 訊號抵達角度計算方式 23
2.4.2 直流準位校正機制 24
2.4.3 正交解調電路設計 29
第三章 目標追蹤及生理監測實驗 37
3.1 前言 37
3.2 利用連續波做訊號源之實驗 37
3.2.1 實驗系統設置 37
3.2.2 量測結果 42
3.3 利用Wi-Fi訊號做訊號源之實驗 44
3.3.1 實驗系統設置 44
3.3.2 量測結果 48
3.4 多人追蹤及生理徵象量測 49
3.5 實驗討論 52
第四章 結論 54
參考文獻 55
參考文獻 References
參考文獻
[1] C. Yang, W. Shen, and X. Wang, “The internet of things in manufacturing: Key issues and potential applications,” IEEE Syst., Man, Cybern. Mag., vol. 4, no. 1, pp. 6–15, 2018.
[2] B. Marr, “Why Everyone Must Get Ready For The 4th Industrial Revolution,” Forbes Tech, April. 2016.
[3] Garmin vivosportTM, Garmin Ltd, Olathe, Kansas, U.S [Online]. Available: https://www.garmin.com.tw/
[4] ALATECH CS011, ALATECH, Taichung, Taiwan [Online]. Available: https://www.alatech.com.tw/
[5] 廖健閔,應用於非接觸脈搏傳遞時間量測之穿戴式雷達感測裝置,國立中山大學電機工程學系碩士論文,民國一百零七年。
[6] P. Marchionni, L. Scalise, I. Ercoli, and E. Tomasini, ‘‘An optical measurement method for the simultaneous assessment of respiration and heart rates in preterm infants,’’ Rev. Sci. Instrum., vol. 84, no. 12, p. 121705, 2013.
[7] K. Mostov, “An apparatus for remote contactless monitoring of sleep apnea,” U.S. Patent 2016 0 022 204 A1, Jan.2016.
[8] A. K. Abbas, K. Heimann, K. Jergus, T. Orlikowsky, andS. Leonhardt, “Neonatal non-contact respiratory monitoring based on real-time infrared thermography,” BioMed.Eng. OnLine, vol. 10, p. 93,Oct. 2011.
[9] C. Li, Z. Peng, T. Huang, T. Fan, F. Wang, T. Horng, J. Muñoz-Ferreras, R. Gómez-García, L. Ran, and J. Lin, “A review on recent progress of portable short-range noncontact microwave radar systems,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 5, pp. 1692–1706, May 2017.

[10] E. Piuzzi, S. Pisa P. D' Atanasio, and A. Zambotti, “Radar cross section measurements of the human body for UWB radar applications,” in Proc. IEEE Instru. and Meas. Technol. Conf., pp. 1290-1293, May 2012.
[11] J. Kiriazi, O. Boric-Lubecke, and V. Lubecke, “Radar cross section of human cardiopulmonary activity for recumbent subject,” in Proc. 31st Annu. Int. Conf IEEE EMBS, Minneapolis, MN, pp. 4808-4811, 2009.
[12] Z. Park, C. Li, and J. Lin, “A broadband microstrip antenna with improved gain for noncontact vital sign radar detection,”IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 939-942, Aug.2009.
[13] C. Tseng, C. Chen, T. Chu, “A low-cost 60-GHz switched-beam patch antenna array with Butler matrix network, ”IEEE Antennas Wireless Propag. Lett., pp.432-435,July. 2008.
[14] C. Nieh and J. Lin, “Adaptive beam-steering antenna for improved coverage of non-contact vital sign radar detection,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1–3, Jun. 2014.
[15] 向敬成、張明友,雷達系統,初版,五南圖書出版股份有限公司,2004
[16] Pulse Doppler Radar, wiki[Online]. Available: https://en.wikipedia.org/wiki/Pulse-Doppler_radar
[17] 淺談車用雷達之量測 [Online]. Available: https://www.eettaiwan.com/news/article/20171026TA31-testing-automotive-radar-devices
[18] J. Lien, N. Gillian, M. E. Karagozler, P.Amihood, C. Schwesig, E. Olson, H. Raja, and I. Poupyrev, “Soli: ubiquitous gesture sensing with millimeter wave radar,” ACM Trans. Graphics, vol. 35, no. 4, article 142, Jul. 2016.

[19] E. G. Larsson, F. Tufvesson, O. Edfors, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.
[20] B.D.Van Veenand K. M. Buckley, “Beamforming: A versatile approach to spatial filtering”, IEEE ASSP Mog., pp. 4-24, Apr. 1988.
[21] X. C. Chen, W. Zhang, W. Rhee, and Z. H. Wang, “A ΔΣ TDC-based beamforming method for vital sign detection radar systems,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 12, pp. 932–936, Dec. 2014.
[22] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath Jr., “Spatially sparse precoding in millimeter wave MIMO systems,” IEEE J. Sel. Areas Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.
[23] M. Nosrati, S. Shahsavari, S. Lee, H. Wang, and N. Tavassolian, “A concurrent dual-beam phased-array doppler radar using MIMO beamforming techniques for short-range vital-signs monitoring,” IEEE Trans. Antennas Propag., vol. 67, no. 4, pp. 2390–2404, 2019.
[24] A. F. Molisch, V. V. Ratnam, S. Han, Z. Li, S. L. H. Nguyen, L. Li, and K. Haneda, “Hybrid beamforming for massive MIMO: A survey,” IEEE Commun. Mag., vol. 55, no. 9, pp. 134–141, Sep. 2017.
[25] Robert J. Mailloux, Phased Array Antenna Handbook, 2ndEdition, Artech house, 2005.
[26] 何濬宏,相列陣列接收模組之微波晶片設計,國立中正大學電機工程研究所碩士論文,民國九十八年。
[27] M. Longbrake, “True time-delay beamsteering for radar,” in Proc. 2012 IEEE Nat. Aerosp. Electron. Conf., pp. 246–249, 2012.

[28] M. Kim, J.B. Hacker, R.E. Mihailovich, and J.F. DeNatale, “A DC-to-40 GHz four-bit RF MEMS true-time delay network,” IEEE Microwave Wireless Comp. Lett., vol. 11, pp. 56-58, Feb. 2001.
[29] J. G. Willms, A. Ouacha, L. de Boer, and F. E. van Vliet, “A wideband GaAs 6-bit true-time delay MMIC employing on-chip digital drivers,” in 2000 30th European Microwave Conference, Oct. 2–5, 2000.
[30] V. Sharma, B. Sharma, V.k.Sharma, K. B.Sharma and D. Bhatnagar, “Modified rectangular patch antenna with air-gap for improved bandwidth,” IEEE Proceedings of international conference on microwave, vol.08, 2008
[31] E. Leevine, G. Malamud, S. Shtrikman and D. Treves, “A study of microstrip antennas with the feed network, “IEEE Trans. Antennas Propagat., vol. 37, pp.426-434, April 1989.
[32] R. C. Johnson, H. Jasik, Antenna Engineering Handbook.5th Edition, McGraw-Hill Education, 2018.
[33] W. L. Stutzman, and G. A Thiele, Antenna Theory and Design. 3rd Edition, Wiley, 2012.
[34] Randy L. Haupt, Antenna Arrays: A Computational Approach. 1stEdition, Wiley-IEEE Press, 2010.
[35] R. Svitec and S. Raman, “DC Offsets in Direct-Conversion Receivers: Characterization and Implications,” IEEE Micro., vol. 6, pp. 76–86, Sep. 2005.
[36] D. Morgan and M. Zierdt, “Novel signal processing techniques for Doppler radar cardiopulmonary sensing,” Signal Processing, vol. 89, no. 1, p. 4566, 2009.
[37] B. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theory Tech., vol. 55, pp. 1073–1079, May 2007

[38] Mini Circuits, Inc. [Online]. Available: https://www.minicircuits.com/.
[39] ADL5380, Analog Devices, Inc. [Online]. Available: https://www.analog.com/en/index.html
[40] 周傳期,利用WiFi訊號偵測手勢及深度學習辨識研究,國立中山大學電機學系碩士論文,民國一百零七年。
[41] WIFI-Link Technologies Co., Ltd. [Online]. Available: https://www.wifi-link.com.tw/
[42] Marvelous Microwave, Inc. [Online]. Available: https://www.micro-mve.com/index.php
[43] S. Magoon, A. E. Fathy, C. Thajudeen, and A. Hoorfar, “Compact, mobile, low power UWB system for through-wall imaging,” in Proc. IEEE WiSNet, Newport Beach, CA, Jan. 2014, pp. 22-24.
[44] Z. Peng, J. M. Muñoz-Ferreras, Y. Tang, C. Liu, R. Gómez-García, L. Ran, and C. Li, “A portable FMCW interferometry radar with programmable low-If architecture for localization, ISAR imaging, and vital sign tracking,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 4, pp. 1334-1344. Apr. 2017.
[45] G. Wang, J. M. Muñoz-Ferreras, C. Gu, C. Li, and R. Gómez-García, “Application of linear-frequency-modulated continuous-wave (LFMCW) radars for tracking of vital signs,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 6, pp. 1387-1399, Jun. 2014.
[46] L. Ren, Y. S. Koo, H. Wang, Y. Wang, Q. Liu, and A. E. Fathy, “Noncontact multiple heartbeats detection and subject localization using UWB impulse Doppler radar,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 10, pp. 690-692, Oct. 2015.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.172.249
論文開放下載的時間是 校外不公開

Your IP address is 18.218.172.249
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code