Responsive image
博碩士論文 etd-0519119-124736 詳細資訊
Title page for etd-0519119-124736
論文名稱
Title
東沙島淺水域費氏窄尾魟和眼斑鷂鱝分佈不均之機制驗證
Distribution heterogeneity of the rays Pateobatis fai and Aetobatus ocellatus in shallow water of Dongsha Island- Hypothesis Testing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2019-06-10
繳交日期
Date of Submission
2019-06-19
關鍵字
Keywords
棲地選擇、獵物密度、魟魚、空拍機、東沙
prey density, habitat selection, stingray, Dongsha, drone
統計
Statistics
本論文已被瀏覽 5841 次,被下載 81
The thesis/dissertation has been browsed 5841 times, has been downloaded 81 times.
中文摘要
本研究探討費氏窄尾魟(Pateobatis fai)與眼斑鷂鱝(Aetobatus ocellatus)的棲地選擇,主要調查魟魚出現時間與空間,藉此探討牠們來到水深1公尺區域所得到的好處。本研究採用無人飛行載具能精確的定位魟魚分布與計算數量,並搭配魟魚食物密度調查及使用光達深度資料來分析魟魚活動深度。針對魟魚來到水深1公尺區域的好處,兩種魟魚的結果都為水深1公尺食物密度顯著高於2-3公尺,支持食物密度假說。水溫假說驗證為不支持,因為冬季水深1公尺溫度較2公尺更低,但魟魚依然會靠近1公尺區域。也不支持迴避獵食者假說,因為低潮時魟魚不會停留在低水位區域。魟魚會來到水深1公尺區域的時間中沒發現季節與白天不同時間的差異,但是潮汐有影響,只在漲潮越高時水深1公尺區域魟魚數量越多,退潮越低時數量越少,並且水深本身的變化才是影響的關鍵。空間分布不均方面,眼斑鷂鱝上發現魟魚高頻率出現區與高食物密度有重疊,但費氏窄尾魟則沒有。季風造成的風浪並不是造成這兩種魟魚在東沙島周空間分布不均的原因。魟魚在高潮時會來到1公尺的水域來攝食,因此深度有較高的食物密度,而1公尺面積越大的海域,當中食物總量也會越多,因而能支撐與吸引更多魟魚來棲息。
Abstract
The spatial and temporal abundance patterns of two rays, Pateobatis fai and Aetobatus ocellatus in waters around Dongsha Island, South China Sea were investigated in this study. Quad rotor drones were used so the position of each occurrence could be analyzed. In addition, the densities of potential prey were surveyed; LIDAR bathymetry were exploited to analyze depths of ray habitats. The visit of rays to very shallow water, about 1 m, is not for high temperature, since the temperature pattern was reversed in winter, but the rays still stay in 1 m. Predator-avoidance hypothesis is not really supported, since the rays left the area during low tide. The prey density hypothesis is supported, as higher densities of potential prey were found between 1 m and 2-3 m depths, as higher densities of conch were found the high ray occurrence area, at least in A. ocellatus. The spatial pattern of ray distribution could not by explained by season, wave and daylight hours, rather the water depth of different areas played an important role. The rays came to 1 m waters during high tide when the habitats were covered by water. Areas of high ray abundance had high proportion of 1 m deep habitats.
目次 Table of Contents
論文審定書…………………………………………………………ⅰ
誌謝………………………………………………………...…………ⅱ
中文摘要……………………………………………………………ⅲ
英文摘要……………………………………………………………ⅳ
目錄……………………………………………………...……………ⅴ
圖目錄……………………………………………………………………………ⅵ
表目錄……………………………………………………………………………ⅶ
附錄………………………………………………………………………………ⅷ
前言……………………………………………………………………1
材料與方法………………………………………….……………7
結果…………………………………………………………………12
討論…………………………………………………………………15
結論…………………………………………………………………19
參考文獻…………………………………………………………20
附錄…………………………………………………………………50
參考文獻 References
林幸助、蕭淑娟 (2011)。東沙海域海草床生物群集調查與指標物種評估。海洋國家公園管理處成果報告。
陳餘鋆、王建平、蘇焉、江偉全、劉商隱 (2016)。東沙島周邊海域檸檬鯊族群及分布研究。海洋國家公園管理處成果報告。
薛憲文、史天元、徐佳筠(2012)。水域測深方法暨原理探討。航測及遙測學刊 第十六卷 第3 期 第203-217 頁
Ajemian, M. J., Powers, S. P.and Murdoch, T. J. (2012). Estimating the potential impacts of large mesopredators on benthic resources: integrative assessment of spotted eagle ray foraging ecology in Bermuda. PLoS One, 7(7), e40227.
Armstrong, A. O., Armstrong, A. J., Jaine, F. R., Couturier, L. I., Fiora, K., Uribe-Palomino, J., ... and Richardson, A. J. (2016). Prey density threshold and tidal influence on reef manta ray foraging at an aggregation site on the Great Barrier Reef. PloS one, 11(5), e0153393.
Bangley, C. and Rulifson, R. (2017). Habitat partitioning and diurnal-nocturnal transition in the elasmobranch community of a North Carolina estuary. Bulletin of Marine Science, 93(2), 319-338.
Baum, J. K.and Worm, B. (2009). Cascading top-down effects of changing oceanic predator abundances. J Anim Ecol, 78(4), 699-714.
Bleckmanm H., Hofmann M. H. (1999). Special Senses. In Hamlett W. C.(Ed.), Sharks, Skates, and Rays: The Biology Of Elasmobranch Fishes,316-322. Johns Hopkins Univ Press.
Bouyoucos, I. A., Suski, C. D., Mandelman, J. W.and Brooks, E. J. (2018). In situ swimming behaviors and oxygen consumption rates of juvenile lemon sharks (Negaprion brevirostris). Environmental Biology of Fishes, 101(5), 761-773.
Compagno, L.J.V., (1997). Myliobatidae. Eagle rays. 1511-1519. In K.E. Carpenter and V.H. Niem (eds.) FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Vol. 3. Batoid fishes, chimaeras and bony fishes. Part 1 (Elopidae to Linophrynidae). FAO, Rome.
Compagno, L.J.V. and Last, P.R. (1999). Myliobatidae. Eagle rays. In: K.E. Carpenter and V.H. Niem (eds) FAO Species Identification Guide for Fishery Purposes. The Living Marine Resources of the Western Central Pacific. Volume 3. Batoid Fishes, Chimaeras and Bony Fishes Part 1 (Elopidae to Linophrynidae). 1511-1519. Food and Agriculture Organization of the United Nations, Rome.
Dicken, M. L., Hussey, N. E., Christiansen, H. M., Smale, M. J., Nkabi, N., Cliff, G. and Wintner, S. P. (2017). Diet and trophic ecology of the tiger shark (Galeocerdo cuvier) from South African waters. PLoS One, 12(6), e0177897.
Dulvy, N. K., Fowler, S. L., Musick, J. A., Cavanagh, R. D., Kyne, P. M., Harrison, L. R., . . . and White, W. T. (2014). Extinction risk and conservation of the world's sharks and rays. Elife, 3, e00590.
Ebert, D. A., Ho, H.C., White, W. T. and De Carvalho, M. R. (2013). Introduction to the systematics and biodiversity of sharks, rays, and chimaeras (Chondrichthyes) of Taiwan. Zootaxa, 3752(1).
Ebert, D. A., White, W. T., Ho, H.C., Last, P. R., Nakaya, K., Seret, B., . . . and De Carvalho, M. R. (2013). An annotated checklist of the chondrichthyans of Taiwan . Zootaxa, 3752(1).
Ezat, M. A., Fritsch, C. J. and Downs, C. T. (2018). Use of an unmanned aerial vehicle (drone) to survey Nile crocodile populations: A case study at Lake Nyamithi, Ndumo game reserve, South Africa. Biological Conservation, 223, 76-81.
Gutteridge, A. (2011). Community structure and biology of the elasmobranchs of Hervey Bay, southeast Queensland, Australia.
Heithaus, M. R., Frid, A., Wirsing, A. J.and Worm, B. (2008). Predicting ecological consequences of marine top predator declines. Trends Ecol Evol, 23(4), 202-210.
Henderson, C. J., Stevens, T., Gilby, B. L.and Lee, S. Y. (2018). Spatial conservation of large mobile elasmobranchs requires an understanding of spatio-temporal seascape utilization. ICES Journal of Marine Science, 75(2), 553-561.
Heupel, M. R. and Simpfendorfer, C. A. 2014. Importance of environmentaland biological drivers in the presence and space use ofa reef-associated shark. Marine Ecology Program Series, 496:47–57.
Hight, B. V. and Lowe, C. G. (2007). Elevated body temperatures of adult female leopard sharks, Triakis semifasciata, while aggregating in shallow nearshore embayments: Evidence for behavioral thermoregulation? Journal of Experimental Marine Biology and Ecology, 352(1), 114-128.
Jewell, O. J., Johnson, R. L., Gennari, E.and Bester, M. N. (2012). Fine scale movements and activity areas of white sharks (Carcharodon carcharias) in Mossel Bay, South Africa. Environmental biology of fishes, 96(7), 881-894.
Joung, S.J., Chen, C.C., Liu, K.M. and Hsieh, T.C. (2015). Age and growth estimates of the Kwangtung skate Dipturus kwangtungensis in the waters of northern Taiwan. Journal of the Marine Biological Association of the United Kingdom, 96(07), 1395-1402.
Kiszka, J. J., Mourier, J., Gastrich, K.and Heithaus, M. R. (2016). Using unmanned aerial vehicles (UAVs) to investigate shark and ray densities in a shallow coral lagoon. Marine Ecology Progress Series, 560, 237-242.
Kodama, K., Waku, M., Sone, R., Miyawaki, D., Ishida, T., Akatsuka, T. and Horiguchi, T. (2018). Ontogenetic and temperature-dependent changes in tolerance to hypoxia and hydrogen sulfide during the early life stages of the Manila clam Ruditapes philippinarum. Mar Environ Res, 137, 177-187.
Last, P.R. and L.J.V. Compagno, (1999). Dasyatididae. Stingrays. 1479-1505. In K.E. Carpenter and V.H. Niem (eds.) FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Vol. 3. Batoid fishes, chimaeras and bony fishes part 1 (Elopidae to Linophrynidae). FAO, Rome.
Lin, F. J., Komai, T.and Chan, T. Y. (2016). A new mud lobster of the genus Thalassina Latreille, 1806 (Crustacea: Decapoda: Gebiidea: Thalassinidae) from marine seagrass beds in Dongsha (Pratas) Island, South China Sea. Raffles Bulletin of Zoology, 64.
McEachran, J.D. and de Carvalho, M.R. (2002). Batoid fishes. In: K.E. Carpenter (ed). The Living Marine Resources of the Western Central Atlantic. Volume 1. Introduction, molluscs, crustaceans, hagfishes, sharks, batoid fishes and chimaeras, FAO Species Identification Guides for Fishery Purposes. FAO, Rome. 508–589.
Mull, C. G., Lowe, C. G. and Young, K. A. (2010). Seasonal reproduction of female round stingrays (Urobatis halleri): steroid hormone profiles and assessing reproductive state. General and Comparative Endocrinology, 166(2), 379-387
Nathan, R., Getz, W. M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D. and Smouse, P. E. (2008). A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences, 105(49), 19052-19059.
Papastamatiou, Y. P., Watanabe, Y. Y., Bradley, D., Dee, L. E., Weng, K., Lowe, C. G. and Caselle, J. E. (2015). Drivers of Daily Routines in an Ectothermic Marine Predator: Hunt Warm, Rest Warmer? PLoS One, 10(6), e0127807.
Russell F. E., Barritt W. C.& Fairchlid M. D. (1957). Electrocardiographic Patterns Evoked by Venom of the Stingray. Experimental Biology and Medicine, 96(3), 634-635.
Stehmann, M., (1981). Myliobatidae. In W. Fischer, G. Bianchi and W.B. Scott (eds.) FAO species identification sheets for fishery purposes. Eastern Central Atlantic(fishing areas 34, 47 ) . Vol. 5
Simpson, A. G., Tripp, L., Shull, D. H. and Yang, S. (2018). Effects of Zostera marina rhizosphere and leaf detritus on the concentration and distribution of pore-water sulfide in marine sediments. Estuarine, Coastal and Shelf Science, 209, 160-168.
Vaudo, J. J. and Heithaus, M. R. (2009). Spatiotemporal variability in a sandflat elasmobranch fauna in Shark Bay, Australia. Marine Biology, 156(12), 2579-2590.
Vaudo, J. J.and Heithaus, M. R. (2011). Dietary niche overlap in a nearshore elasmobranch mesopredator community. Marine Ecology Progress Series, 425, 247-260.
Vaudo, J. J. and Heithaus, M. R. (2012). Diel and seasonal variation in the use of a nearshore sandflat by a ray community in a near pristine system. Marine and Freshwater Research, 63(11).
Vaudo, J. J.and Heithaus, M. R. (2013). Microhabitat selection by marine mesoconsumers in a thermally heterogeneous habitat: behavioral thermoregulation or avoiding predation risk? PLoS One, 8(4), e61907.
Wallman, H. L. and Bennett, W. A. (2006). Effects of Parturition and Feeding on Thermal Preference of Atlantic Stingray, Dasyatis sabina (Lesueur). Environmental Biology of Fishes, 75(3), 259-267.
White, W. T., Last, P. R., Stevens, J. D., Yearsley, G. K., Fahmi and Dharmadi. (2006). Economically Important Sharks and Rays of Indonesia. Canberra: Australian Centre for International Agricultural Research (ACIAR).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code