博碩士論文 etd-0505113-162958 詳細資訊

[回到前頁查詢結果 | 重新搜尋]

姓名 林熙翔(Hsi-Hsiang Lin) 電子郵件信箱 E-mail 資料不公開
畢業系所 海洋地質及化學研究所(Marine Geology and chemistry)
畢業學位 碩士(Master) 畢業時期 101學年第2學期
論文名稱(中) 南海北部顆粒性有機碳之側向通量
論文名稱(英) Lateral Fluxes of Particulate Organic Carbon in the Northern South China Sea
  • etd-0505113-162958.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。

    紙本論文:3 年後公開 (2016-06-05 公開)

    電子論文:使用者自訂權限:校內 3 年後、校外 3 年後公開

    論文語文/頁數 中文/75
    統計 本論文已被瀏覽 5358 次,被下載 1036 次
    摘要(中) 摘要
    為了更加瞭解熱帶邊緣海的碳循環,本研究以漂浮式沉積物收集器於2012年9月5、6日及25–28日的兩個航次,在南海北部T1 (21°42' N; 120°2' E) 和T2 (21°37' N; 119°54' E) (水深>2000 m) 兩個測站,收集不同深度的沉降顆粒並量測顆粒性有機碳 (particulate organic carbon, POC) 通量 (flux),同時以掃描式電子顯微鏡觀察顆粒外觀,並以感應耦合電漿質譜儀量測沉降顆粒之金屬濃度,以探討南海北部POC flux及其來源。結果在T1站150、500及1000 m的POC flux分別為33、32及23 mg-C m−2 d−1,而在T2站150、500、1000及2000 m的POC flux分別是36、46、24及35 mg-C m−2 d−1 。此結果和一般大洋不一樣,大洋的POC flux是隨深度遞增而遞減。然而本研究反而在深水處 (1000及2000 m) 有高值出現,暗示此區域可能有很高的e ratio (POC flux/基礎生產力) 或有深海側向傳送、再懸浮等現象。然而電子顯微鏡觀察的結果呈現150 m之沉降顆粒是以浮游植物殼體、糞粒碎屑等海源性居多,但深層之沉降顆粒則以非生物性的居多。發現在500 m以下之沉降顆粒含有高比例的鋁 (7.0%)、鐵(4.0%),與地殼中鋁 (8.2%) 和鐵 (5.6%) 含量接近。綜合上述的證據,本研究區域之深海有機碳的來源非來自有光層內的海源性顆粒,而是可能來自沉積物的再懸浮、海底崩塌等側向傳輸所帶來的陸源物質。經以傳統的下沉顆粒遞減模式來扣除深水處之POC flux,得到1000及2000米側向傳送的通量分別是13.5及28.5 mg-C m−2 d−1。
    摘要(英) To better understand sinking particles fluxes and their sources in tropical
    marginal seas, this study measured particulate organic carbon fluxes at
    different depths at two stations T1, (21°25.6'N; 120°1.4'E) and T2
    (21°22.5'N; 119 °32.9'E, water depth >2000 m) in the boundary area
    between the shelf and the basin of the northern South China Sea on
    September 5th-6th and 25th-28th in 2012, respectively. Images of selected
    sinking particles were directly taken by scanning electron microscopy
    (SEM). Concentrations of metals in sinking particles were measured by
    ICP-MS. The results showed that POC fluxes at 150, 500 and 1000 m at
    station T1 were 33, 32 and 23 mg-C m−2 d−1, respectively. At station T2,
    POC fluxes at 150, 500, 1000 and 2000 m were 36, 46, 24 and 35 mg-C
    m−2 d−1,respectively. POC fluxes in the deep depths (1000 and 2000 m) at
    both stations had elevated values. The observed results are different from
    normal distribution of POC flux in the open ocean suggesting elevated
    e-ratios (POC flux/primary production) or lateral flux dominating POC flux
    in the study area. Sinking particles from 150 m contained abundant marine
    biogenic particles such as phytoplankton cells, fecal pellets, and detritus,
    while sinking particles from deep water (1000 and 2000 m) contained
    abundant non-biogenic particles. Moreover, sinking particles below 500 m
    contained high concentrations of Al (8.2%, dry weight) and Fe (5.6%)
    which are close to those in the earth crust. The results suggest that elevated
    POC fluxes appearing at deep waters (>500 m) could be from sediment
    resuspension, lateral particle transport, or episodic events rather than from
    marine biogenic particles sinking. The lateral POC fluxes, estimated by a
    commonly applied POC flux degradation equation (i.e. the Martin equation,
    1987), were13.5 and 28.5 mg-C m−2 d−1 at 1000 and 2000 m in the northern
    South China Sea, respectively.
  • 沉積物收集器
  • 側向傳輸
  • 南海北部
  • 碳通量
  • 顆粒性有機碳
  • 關鍵字(英)
  • lateral flux
  • northern South China Sea
  • carbon flux
  • floating sediment trap
  • particulate organic carbon
  • 論文目次 目錄
    致謝 I
    摘要 III
    Abstract V
    目錄 VII
    圖目錄 X
    表目錄 XIII
    第一章、前言 1
    1.1. 本研究的重要性 1
    1.1.1. 海洋對二氧化碳的影響 1
    1.1.2. 物理幫浦 (physical pump) 2
    1.1.3. 生物幫浦 (biological pump) 3
    1.1.4. 顆粒性有機物 (particulate organic carbon, POC) 4
    1.2. 研究現況 7
    1.3. 研究目的 10
    第二章、材料與方法 11
    2.1. 研究區域 11
    2.2. 水樣採集和分析 11
    2.2.1 水體中顆粒性有機碳 (particle organic carbon, POC ) 12
    2.2.2.營養鹽 (氮、磷、矽) 12
    2.3. 沉降POC的收集與分析 15
    2.3.1 沉積物收集器 19
    2.4. 以感應耦合電漿質譜儀 20
    2.5. 透光度探針 (transmissometer) 20
    2.6. Martin’s equation 21
    第三章、結果與討論 22
    3.1. 南海北部之水文特徵 22
    3.1.1. 溫度及鹽度 22
    3.1.2. 營養鹽及葉綠素a 23
    3.1.3. 總懸浮物質及海水之穿透率 25
    3.1.4. 溶解態有機碳 (dissolved organic carbon) 29
    3.1.5. 懸浮態顆粒有機碳 (Particulate Organic Carbon, POC) 之濃度 30
    3.3. 碳通量的推估 40
    3.4. 掃描式電子顯微鏡結果 41
    3.5.沉降顆粒之微量金屬濃度 43
    第四章、結論. 47
    參考文獻 49
    中文部份 49
    英文部分 50
    參考文獻 中文部份
    Agrawal, Y.C. and Pottsmith, H.C., 2000. Instruments for particle size and settling velocity observations in sediment transport. Marine Geology, 168(1–4): 89–114.
    Antia, A.N. et al., 2001. Basin-wide particulate carbon flux in the Atlantic Ocean: Regional export patterns and potential for atmospheric CO2 sequestration. Global Biogeochemical Cycles, 15(4): 845–862.
    Armstrong, R.A., Lee, C., Hedges, J.I., Honjo, S. and Wakeham, S.W., 2002. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep Sea Research Part II: Topical Studies in Oceanography, 49(1–3): 219–236.
    Bhat, S.G., Krishnaswamy, S., Lal, D., Rama, D. and Moore, W.S., 1969. Th-234/ U-238 ratios in the ocean. Earth and Planetary Science Letters 5: 483–491.
    Boyd, P. and Newton, P., 1995. Evidence of potential influence of planktonic community structure on the interannual variability of particulate organic carbon flux. Deep Sea Research Part I: Oceanographic Research Papers, 42(5): 619–639.
    Broecker, W.S., Patzert, W.C., Toggweile, J.R. and Stuiver, M., 1986. Hydrography, chemistry, and radioisotopes in the Southeast Asian basins. Journal of Geophysical Research: Oceans, 91(C12): 14,345–14,354.
    Bruland, K.W. and Coale, K.H., 1986. Surface water 234Th/238U disequilibria: spatial and temporal variations of scavenging rates within the Pacific ocean. In: Dynamic Processes in the Chemistry of the Upper Ocean, New York: 159–172.
    Buesseler, K.O., Andrews, J.A., Hartman, M.C., Belastock, R. and Chai, F., 1995. Regional estimates of the export flux of particulate organic-carbon derived from Th-234 during the JGOFS EqPac program. Deep Sea Research Part II: Topical Studies in Oceanography, 42(2–3): 777–804.
    Buesseler, K.O. et al., 2007. An assessment of the use of sediment traps for estimating upper ocean particle fluxes. Journal of Marine Research, 65: 345–416.
    Buesseler, K.O., Bacon, M.P., Cochran, J.K. and Livingston, H.D., 1992. Carbon and nitrogen export during the JGOFS North Atlantic Bloom Experiment estimated from Th-234: U-238 disequilibria. Deep-Sea Research II, 39: 1115–1137.
    Buesseler, K.O. et al., 2006. An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of Th-234 as a POC flux proxy. Marine Chemistry, 100(3–4): 213–233.
    Cai, P., Huang, Y., Chen, M., Liu, G. and Qiu, Y., 2002a. New production in the South China Sea. Science in China (series D), 45(2): 103–109.
    Cai, P. et al., 2002b. New production based on 228Ra-derived nutrient budgets and thorium-estimated POC export at the intercalibration station in the South China Sea. Deep-Sea Research I, 49: 53–66.
    Chen, C. T. A., 2003. New vs. export production on the continental shelf. Deep-Sea Research II, 50:1327–1333
    Chen, C. T. A., Wang, S.-L., Chou, W.-C., Sheu and D.-D., 2006. Carbonate chemistry and projected future changes in pH and CaCO3 saturation state of the South China Sea. Marine Chemistry, 101:277–205.
    Chen, J.-F. et al., 1998. Estimations of primary productivity and export production in the South China Sea based on sediment trap experiments. Chinese Science Bulletin, 43(7): 585–586.
    Chen, L.Y.-L. and Chen, H.-Y., 2005. Spatial and seasonal variations of nitrate based new production and primary production in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 52(2): 319–340.
    Chen, L.Y.-L. and Chen, H.-Y., 2006. Seasonal dynamics of primary and new production in the northern South China Sea: The significance of river discharge and nutrient advection. Deep Sea Research Part I: Oceanographic Research Papers, 53(6): 971–986.
    Chen, W., Cai, P., Dai, M. and Wei, J., 2008. 234Th/238U disequilibrium and particulate organic carbon export in the Northern South China Sea. Journal of Oceanography, 64(3): 417–428.
    Chou, W.-C. et al., 2006. Estimated net community production during the summertime at the SEATS time-series study site, Northern South China Sea: Implications for nitrogen fixation. Geophysical Research Letters, 33(22): L22610.
    Coale, K.H. and Bruland, K.W., 1985. Th-234/U-238 disequilibria within the California current. Limnology and Oceanography 30: 22–33.
    Fanning, K.A. and Pilson, M.E.Q., 1973. On the Spectrophotometric determination of dissolved silica in natural waters. Analytical Chemistry, 45(1): 136–140.
    Feely, R.A., Sarbine, C.L., Takahashi, T. and Wanninkhof, R., 2001. Uptake and storage of carbon dioxide in the ocean: the global CO2 survey. Oceanography, 14: 18–32.
    Goldberg, E.D., 1954. Marine Chemistry 1. Chemical scavengers of the sea. J. Geol., 62: 249–265.
    Gong, G.-C., Chen, L.Y.-L. and Liu, K.-K., 1996. Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrient dynamics. Continental Shelf Research, 16(12): 1561–1590.
    Gong, G.-C., Liu, K.-K., Liu, C.-T. and Pai, S.-C., 1992. The Chemical Hydrography of the South China Sea west of Luzon and a Comparison with the west Philippine Sea. Terrestrial Atmospheric and Oceanic Sciences, 3(4): 587–602.
    Gong, G.-C., Wen, Y.-H., Wang, B.-W. and Liu, G.-J., 2003. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6–7): 1219–1236.
    Gordon, D., 1971, Distributions of particulate organic carbon and nitrogen at an oceanic station in the central Pacific. Deep Sea Res., 34: 267–285.
    Hedges, J.I., 1992a. Global biogeochemical cycles - progress and problems. Marine Chemistry, 39( 1–3): 67–93.
    Hedges, J.I., 1992b. Global biogeochemical cycles: progress and problems. Marine Chemistry, 39(1–3): 67–93.
    Hedges, J.I. and M., O.J., 1997. Comparative organic geochemistries of soils and marine sediments. Organic Geochemistry, 27(7–8): 319–361.
    Ho, T.-Y., Chou, W.-C., Lin, H.-L. and Sheu, D.-D., 2011. Trace metal cycling in the deep water of the South China Sea: The composition, sources, and fluxes of sinking particles. Limnol. Oceanogr., 56(4): 1225–1243.
    Ho, T.-Y. et al., 2010. Trace metal cycling in the surface water of the South China Sea: Vertical fluxes, composition, and sources. Limnol. Oceanogr., 55(5): 1807–1820.
    Ho, T.-Y. et al., 2009. Cadmium and phosphorus cycling in the water column of the South China Sea: The roles of biotic and abiotic particles. Marine Chemistry, 115(1–2): 125–133.
    Honjo, S., Spencer, D.W. and Gardner, W.D., 1992. A sediment trap intercomparison experiment in the Panama Basin. Deep Sea Research Part A. Oceanographic Research Papers, 39(2): 333–358.
    Hsu, S.-C. et al., 2008. A criterion for identifying Asian dust events based on Al concentration data collected from northern Taiwan between 2002 and early 2007. Journal of Geophysical Research: Atmospheres (1984–2012), 113(D18).
    Hu, J.-y., Kawamura, H., Hong, H. and Qi, Y.-Q., 2000. A Review on the Currents in the South China Sea: Seasonal Circulation, South China Sea Warm Current and Kuroshio Intrusion. Journal of Oceanography, 56(6): 607-624.
    Hung, C.-C. and Gong, G.-C., 2007. Export flux of POC in the main stream of the Kuroshio. Geophysical Research Letters, 34(18): L14610.
    Hung, C.-C. and Gong, G.-C., 2010. POC/234Th ratios in particles collected in sediment traps in the northern South China Sea. Estuarine, Coastal and Shelf Science, 88(3): 303–310.
    Hung, C.-C., Gong, G.-C., Chung, W.-C., Kuo, W.-T. and Lin, F.-C., 2009. Enhancement of particulate organic carbon flux induced by the atmospheric forcing in the subtropical oligotrophic northwest Pacific Ocean. Marine Chemistry, 113(1–2): 19–24.
    Hung, C.-C., Gong, G.-C. and Santschi, P.H., 2012. 234Th in different size classes of sediment trap collected particles from the Northwestern Pacific Ocean. Geochimica et Cosmochimica Acta, 91: 60–74.
    Hung, C.-C. et al., 2003a. Production and flux of carbohydrate species in the Gulf of Mexico. Global Biogeochemical Cycles, 17(2),1055.
    Hung, C.-C., Guo, L., Roberts, K. and Santschi, P.H., 2004. Upper ocean carbon flux determined by the 234Th approach and sediment traps using size-fractionated POC and 234Th data from the Gulf of Mexico. Geochemical Journal, 38: 601–611.
    Hung, J.-J., Lin, C.-S., Chung, Y.-C., Hung, G.-W. and Liu, W.-S., 2003b. Lateral fluxes of biogenic particles through the Mien-Hua canyon in the southern East China Sea slope. Continental Shelf Research, 23(10): 935–955.
    Hung, J.-J., Wang, S.-M. and Chen, Y.-L., 2007. Biogeochemical controls on distributions and fluxes of dissolved and particulate organic carbon in the Northern South China Sea. Deep-Sea Research II, 54: 1486–1503.
    Jarvis, K.E., Gray, A.L. and Houk, R.S., 1992. Handbook of Inductively Coupled Plasma Mass Spectrometry. New York: Chapman and Hall.
    Lai, Z.-L., Liu, K.-K., 1994. The distribution of carbon, nitrogen and sulfur
    in surficial sediments on the continental shelf and slope in northern
    South China Sea. Acta Oceanographica Taiwanica 32: 30–44.
    Lee, C., Wakeham, S.G. and Hedges, J.I., 1988. The Measurement of Oceanic Particle Flux—Are "Swimmers" a Problem? Oceanography, 1(2): 34–36.
    Liang, W.D., Jan, J.C. and Tang, T.Y., 2000. Climatological wind and upper ocean heat content in the South China Sea. Acta Oceanography Taiwanica, 38: 91–114.
    Liu, J.-T., Kao, S.-J., Huh, C.-A. and Hung, C.-C., 2013. Gravity Flows Associated with Flood Events and Carbon Burial: Taiwan as Instructional Source Area. Annual Review of Marine Science, 5: 47–68.
    Liu, K.-K. et al., 2002. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep Sea Research Part I: Oceanographic Research Papers, 49(8): 1387–1412.
    Martin, J.H., Knauer, G.A., Karl, D.M. and Broenkow, W.W., 1987. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Research Part A. Oceanographic Research Papers, 34(2): 267–285.
    Meyers P A, 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology,144: 289–302
    Michaels, A.F. and Silver, M.W., 1988. Primary production, sinking fluxes and the microbial food web. Deep Sea Research Part A. Oceanographic Research Papers, 35(4): 473–490.
    Morris, I., Glover, H.E. and Yentsch, C.S., 1974. Products of photosynthesis by marine phytoplankton: the effect of environmental factors on the relative rates of protein synthesis. Marine Biology, 27(1): 1–9.
    Murray, J.W., Downs , J.N., Storm, S., Wei, C.-L. and Jannason, H.W., 1989. Nutrient assimilation, export production and 234Th scavenging in the eastern equatorial Pacific. Deep Sea Research Part A. Oceanographic Research Papers,, 36(10): 1471–1489.
    Nightingale, P.D. et al., 2012. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochemical Cycles, 14(1): 373–387.
    Nitani, H., 1972. Beginning of the Kuroshio. Kuroshio; Its Physical Aspects: 129–163.
    Nozaki, Y. and Yamamoto, Y., 2001. Radium 228 based nitrate fluxes in the eastern Indian Ocean and the South China Sea and a silicon-induced “alkalinity pump” hypothesis. Global Biogeochemical Cycles, 15(3): 555–567.
    Pai, S.-C. and C.-C., Y., 1990. Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex. Analytica Chimica Acta, 229: 115–120.
    Pai, S.-C., Yang, C.-C. and Riley, J.P., 1990. Formation kinetics of the pink azo dye in the determination of nitrite in natural waters. Analytica Chimica Acta, 232: 345–349.
    Passow, U., Dunne, J., Murray, J.W., Balistrieric, L. and Alldredged, A.L., 2006. Organic carbon to 234Th ratios of marine organic matter. Marine Chemistry, 100(3–4): 323–336.
    Price, N.B. and Skei, J.M., 1975. Areal and seasonal variations in the chemistry of suspended particulate matter in a deep water fjord. Estuarine and Coastal Marine Science, 3(3): 349–369.
    Redfield, A. C., B. H. Ketchum, and F. A. Richards, 1963. The influence of organisms on the composition of sea water, In The Sea, 2, Edited by M.N. Hill, Wiely-Interscience, New York, 26–77.
    Richardson, T.L. and Jackson, G.A., 2007. Small Phytoplankton and Carbon Export from the Surface Ocean. Science, 315: 838–840.
    Santos-Echeandíaa, J., Pregoa, R., Cobelo-Garcíaa, A. and Caetanob, M., 2012. Metal composition and fluxes of sinking particles and post-depositional transformation in a ria coastal system (NW Iberian Peninsula). Marine Chemistry, 134–135: 36–46.
    Sarmiento, J.L., Murnane, R., Quere, C.L., Keeling, R. and Williams, R.G., 1995. Air-Sea CO2 transfer and the Carbon budget of the North Atlantic. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 348: 211–219.
    Siegenthaler, U. and Samiento, J.L., 1993. Atmospheric carbon dioxide and the ocean. Nature, 365: 119–125.
    Strickland, J.D.H. and Parsons, T.R., 1972. A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada, Ottawa,: 167.
    Suess, E., 1980. Particulate organic carbon flux in the oceans—surface productivity and oxygen utilization. Nature, 288: 260–263.
    Tsunogai, S. and Minagawa, M., 1976. Vertical flux of organic materials estimated from Th-234 in the ocean. Joint Oceanographic Assembly, Edinburgh, 156: 13–24.
    Turner, D.R., Whitfield, M. and Dickson, A.G., 1981. The equilibrium speciation of dissolved components in freshwater and sea water at 25°C and 1 atm pressure . Geochimica et Cosmochimica Acta, 46: 855–882.
    Walsh, J.J., 1988. On the Nature of Continental Shelves, Academic Press, London,, 520 pp.
    Walsh, T.W., 1989. Total dissolved nitrogen in seawater: a new-high-temperature combustion method and a comparison with photo-oxidation. Marine Chemistry, 26(4): 295–311.
    Wanninkhof, R. and McGillis, W.R., 1999. A cubic relationship between air-sea CO2 exchange and wind speed. Geophysical Research Letters, 26(13): 1889–1892.
    Wei, C.-L. et al., 2011. Particle-reactive radionuclides (234Th, 210Pb, 210Po) as tracers for the estimation of export production in the South China Sea. Biogeosciences Discuss, 8: 3793–3808.
    Wei, C.L. and Murray, J.W., 1992. Temporal variations of Th-234 activity in the water column of Dabob Bay: Particle scavenging. Limnology and Oceanography, 37: 296–314.
    White, J., 1990. The Use of Sediment Traps in High-Energy Environments. Marine Geological Surveying and Sampling: 145–152
    Wiesner, M.G., Zheng, L., Wong, H.K., Wang, Y. and Chen, W., 1996. Fluxes of particulate matter in the South China Sea. SCOPE, 57: 293–312.
    Wyrtki, K., 1961. Physical oceanography of the Southeast Asian waters. University of California, Scripps Institution of Oceanography, La Jolla, Calif.
    Yang, W.-F. et al., 2009. Export and remineralization of POM in the Southern Ocean and the South China Sea estimated from 210Po/210Pb disequilibria. Chinese Science Bulletin, 54(12): 2118–2123.
    Yu, E.-F. et al., 2001. Trapping effciency of bottom-tethered sediment traps estimated from the intercepted fluxes of 230Th and 231Pa. Deep Sea Research Part I: Oceanographic Research Papers, 48(3): 865–889.
  • 林慧玲 - 召集委員
  • 周文臣 - 委員
  • 許世傑 - 委員
  • 洪慶章 - 指導教授
  • 陳鎮東 - 指導教授
  • 口試日期 2013-06-03 繳交日期 2013-06-05

    [回到前頁查詢結果 | 重新搜尋]