論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
日本海1965-2011年間海水酸化之探討 Acidification in the Sea of Japan between 1965 and 2011 |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
118 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2014-02-13 |
繳交日期 Date of Submission |
2014-02-19 |
關鍵字 Keywords |
海水對流減緩、日本海、pH、海水酸化、全球暖化、人為二氧化碳 the Sea of Japan, pH, ocean acidification, global warming, anthropogenic CO2, reduced ventilation |
||
統計 Statistics |
本論文已被瀏覽 6260 次,被下載 687 次 The thesis/dissertation has been browsed 6260 times, has been downloaded 687 times. |
中文摘要 |
工業革命開始,人類燃燒化石燃料、製造水泥及砍伐森林等等活動,釋放出許多二氧化碳至大氣中,其中約有26%被海洋所吸收。因此海洋的pH值,正在以過去三千萬年來從未見過的速率下降。眾所周知的是,如此顯著且快速的海洋酸化現象,正威脅著許多主要海洋生物 (鈣質浮游植物),降低其構成外殼及內部骨骼的能力,影響其成長過程及某些物種生命前期的存活率。 海洋吸收了來自大氣的人為二氧化碳而持續酸化,一般而言,人為二氧化碳的濃度隨著深度增加而遞減,因此酸化速率也隨著深度增加而逐漸減緩。但是全球暖化現象,使得大洋之溫鹽環流趨緩,導致年紀較輕的海水往深海補充漸緩。此現象對深海pH之影響,仍未被探討。日本海自有形成之深水及底水環流系統與大洋類似,而且文獻顯示,日本海深水的對流在過去數十年已有明顯的減緩,被稱為「微型海洋」的日本海,可做為全球暖化對於深海海水酸化影響之重要指標。 本研究使用1965-2011年日本氣象廳 (Japan Meteorological Agency,JMA)於日本海的實測數據,並獨立計算出 (1) 暖化;(2) 人為二氧化碳入侵;及(3) 對流減緩。實測結果顯示,日本海之酸化率於300m有極大值-0.00236 pH units yr-1,1000m以深之酸化率,則隨深度增加而增加,於2500m處為-0.00303 pH units yr-1。獨立計算中,(1) 暖化造成之pH年變化率,只對0-100m海水有明顯之影響;(2) 日本海海水較大洋同深度的海水年輕,人為二氧化碳入侵造成之酸化較同深度之大洋快;(3) 暖化使深海對流減緩,累積更多有機質分解的二氧化碳與酸。對流減緩造成日本海深海海水之酸化,比人為二氧化碳入侵效應還大,此效應在深海海水酸化上之影響最鉅。估算上述三項因素所造成之酸化率對深度的分布,於1500-2500m之深水與實測酸化速率之趨勢相似。 因此,在討論深海海水酸化時,需額外考慮對流減緩造成之酸化。此效應令海洋生態受到之衝擊,將比只考慮人為二氧化碳入侵之酸化,要發生得更快 |
Abstract |
Oceans absorb approximately 26% of carbon dioxide emitted to the atmosphere owing to fossil fuel burning, cement production and clearing of forests. Consequently, the pH value of seawater may be decreasing at a rate not seen for at least the last 30 million years. As is well known, such ocean acidification significantly impacts the ability of many major marine organisms (e.g., calcareous phytoplankton) to build their outer shells as well as inner skeletal structures, subsequently reducing the growth and survival of early life stages of some species. The rate of acidification is generally diminished with an increasing depth. Slowing down the thermohaline circulation due to global warming could reduce the pH in the deep oceans. The effect of deep oceans acidification has not been discussed. As a miniature ocean with its own deep and bottom water formations, the Sea of Japan provides an insight into how future global warming can alter the deep oceans acidification. The data collected between 1965 and 2011 from the Sea of Japan have been archived by the Japan Meteorological Agency (JMA). To compare with the observed data, we considered three factors which affect ocean acidification: (1) global warming; (2) penetration of anthropogenic CO2 and (3) reduced ventilation. The observed data shows that the acidification rates have the maximum of -0.00236 pH units yr-1 at a depth of 300m. The rates increase from -0.00129 pH units yr-1 at 1000m to -0.00303 pH units yr-1 at 2500m. In our estimation, the acidification rate due to (1) global warming only affects the upper 100m seawater; (2) penetration of anthropogenic CO2 in the Sea of Japan is faster than that of the open ocean at the same depth, owing to the younger Sea of Japan water; (3) reduced ventilation has accumulated more CO2 and acid by the decomposition of organic matter. This factor is more effective than anthropogenic CO2 penetration. To sum up the three factors above, the estimated rates at the depths below 1500m are similar to those observed rates. Our result shows that the effect of reduced ventilation should be considered in the ocean acidification studies. The ocean ecosystem could be impacted earlier and more severely than only considering the penetration of anthropogenic CO2. |
目次 Table of Contents |
誌謝 i 摘要 iii Abstract v 目錄 vii 圖目錄 ix 表目錄 xii 第1章、 前言 1 1.1 全球暖化 1 1.2 海水酸化 2 1.3 研究目的及區域選擇 3 第2章、 研究材料與方法 7 2.1 研究材料 7 2.1.1 資料庫數據 7 2.1.2 數據品質 9 2.1.3 採樣及pH測量標準 12 2.1.4 實驗室數據 13 2.2 研究方法 14 2.2.1 使用軟體 14 2.2.2 鋒面定義 14 2.3 數據計算 16 2.3.1 碳酸鹽系統 16 2.3.2 誤差估算 16 第3章、 結果 17 3.1 pH25˚C、AOU及θ年變化率觀測結果 17 3.2 SAF (Subarctic Front)南北之觀測結果 23 3.2.1 以溫度區分SAF 23 3.2.2 SAF南北側之pH25˚C及θ年變化率觀測結果 30 第4章、 討論 41 4.1 初始數據 41 4.2 海水溫升高驅使之pH25˚C變化速率 42 4.3 人為二氧化碳增加驅使之pH25°C變化速率 44 4.4 海水對流減緩驅使之pH25°C變化速率 50 4.5 疊加效應之影響 56 4.6 pH25°C觀測與估算速率之比較 58 4.7 日本海pH25°C、AOU及θ週期震盪 61 第5章、 結論 65 第6章、 參考文獻 67 附錄一 73 |
參考文獻 References |
中文部分: 陳鎮東,王樹倫,黃明祥 (1996)。KEEP-MASS航次碳酸鹽數據報告,284 pp.。國立中山大學海洋地質及化學研究所研究報告第27號。 英文部分: Belkin, I., and P. Cornillon (2003), SST fronts of the Pacific coastal and marginal seas, Pacific Oceanography, 1(2), 90-113. Bindoff, N. L., J. Willebrand, V. Artale, A. Cazenave, J. Gregory, S. Gulev, K. Hanawa, C. Le Quéré, S. Levitus, Y. Nojiri, C. K. Shum, L. D. Talley, and A. Unnikrishnan (2007), Observations: oceanic climate change and sea level. In climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change.Rep., Cambridge University, Cambridge, United Kingdom and New York, NY, USA. Brewer, P. G. (2009), A changing ocean seen with clarity, Proceedings of the National Academy of Sciences of the United States of America, 106(30), 12213-12214, doi:10.1073/pnas.0906815106. Byrne, R. H., S. Mecking, R. A. Feely, and X. Liu (2010), Direct observations of basin-wide acidification of the North Pacific Ocean, Geophysical Research Letters, 37(2), doi:10.1029/2009gl040999. Chen, C. T. A. (2009), Chemical and physical fronts in the Bohai, Yellow and East China seas, Journal of Marine Systems, 78(3), 394-410, doi:10.1016/j.jmarsys.2008.11.016. Chen, C. T. A., A. S. Bychkov, S. L. Wang, and G. Y. Pavlova (1999), An anoxic Sea of Japan by the year 2200, Marine Chemistry, 67, 249-265. Chen, C. T. A., G. C. Gong, S. L. Wang, and A. S. Bychkov (1996a), Redfield ratios and regeneration rates of particulate matter in the Sea of Japan as a model of closed system, Geophysical Research Letters, 23(14), 1785-1788, doi:10.1029/96gl01676. Chen, C. T. A., C. M. Lin, B. T. Huang, and L. F. Chang (1996b), Stoichiometry of carbon, hydrogen, nitrogen, sulfur and oxygen in the particulate matter of the western North Pacific marginal seas, Marine Chemistry, 54, 179-190. Chen, C. T. A., S. L. Wang, and A. S. Bychkov (1995), Carbonate chemistry of the Sea of Japan, Journal of Geophysical Research, 100(C7), 13737-13745. Chen, G.-T., and F. J. Millero (1979), Gradual increase of oceanic CO2, Nature, 277, 205-206. Cui, Y., and T. Senjyu (2010), Interdecadal oscillations in the Japan Sea Proper Water related to the Arctic Oscillation, Journal of Oceanography, 66, 337-348. Cui, Y., and T. Senjyu (2012), Has the upper portion of the Japan Sea Proper Water formation really been enhancing?, Journal of Oceanography, 68(4), 593-598, doi:10.1007/s10872-012-0115-y. Dickson, A. G. (1990a), Standard potential of the reaction: AgCl(s)+0.5H2(g)=Ag(s)+HCl(aq), and the standard acidity constant of the ion HSO4- in synthetic seawater from 273.15 to 318.15 K, Journal of Chemical Thermodynamics, 22, 113-127. Dickson, A. G. (1990b), Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 K to 318.15 K, Deep-Sea Research, 37, 755-766. Dickson, A. G., and F. J. Millero (1987), A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Research, 34(10), 1733-1743. Dore, J. E., R. Lukas, D. W. Sadler, M. J. Church, and D. M. Karl (2009), Physical and biogeochemical modulation of ocean acidification in the central North Pacific, Proceedings of the National Academy of Sciences of the United States of America, 106(30), 12235-12240, doi:10.1073/pnas.0906044106. Gamo, T. (1999), Global warming may have slowed down the deep conveyor belt of a marginal sea of the northwestern Pacific: Japan Sea, Geophysical Research Letters, 26(20), 3137-3140, doi:10.1029/1999gl002341. Gattuso, J.-P., and L. Hansson (2011), Ocean acidification, 352 pp., Oxford University Press, New York. Gieskes, J. M. (1969), Effect of temperature on the pH of seawater, Limnology and Oceanography, 14, 679-685. Ichiye, T. (1984), Some problems of circulation and hydrography of the Japan Sea and the Tsushima Current, Elsevier Oceanography series, 39, 15-54, doi:10.1016/s0422-9894(08)70289-7. IPCC (2013), Summary for policymakers. In: climate change 2013: the physical science basis. Rep., 27 pp, Cambridge, United Kingdom and New York, NY, USA. Ishii, M. (2013), personal communication. Keeling, R. F., S. C. Piper, A. F. Bollenbacher, and S. J. Walker (2009), Atmospheric CO2 records from sites in the SIO air sampling network. In trends: A compendium of data on global change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A., doi:10.3334/CDIAC/atg.035. Kim, K., K.-R. Kim, D.-H. Min, Y. Volkov, J.-H. Yoon, and M. Takematsu (2001), Warming and structural changes in the East (Japan) Sea: A clue to future changes in global oceans?, Geophysical Research Letters, 28(17), 3293-3296, doi:10.1029/2001gl013078. Kim, T.-W., K. Lee, R. A. Feely, C. L. Sabine, C.-T. A. Chen, H. J. Jeong, and K. Y. Kim (2010), Prediction of Sea of Japan (East Sea) acidification over the past 40 years using a multiparameter regression model, Global Biogeochemical Cycles, 24(3), doi:10.1029/2009gb003637. Laurmann, J. A., and R. M. Rotty (1983), Exponential growth and atmospheric carbon dioxide, Journal of Geophysical Research, 88(C2), 1295, doi:10.1029/JC088iC02p01295. Min, D.-H., and M. J. Warner (2005), Basin-wide circulation and ventilation study in the East Sea (Sea of Japan) using chlorofluorocarbon tracers, Deep Sea Research Part II: Topical Studies in Oceanography, 52(11-13), 1580-1616, doi:10.1016/j.dsr2.2003.11.003. Nikitin, A. A. (2005), Spatial distribution of thermal fronts in the Japan Sea and some elements of their variability by satellite data, Proceedings of The International Symposium on Remote Sensing of Environment, 266-270 Park, G.-H., K. Lee, and P. Tishchenko (2008), Sudden, considerable reduction in recent uptake of anthropogenic CO2 by the East/Japan Sea, Geophysical Research Letters, 35(23), doi:10.1029/2008gl036118. Park, G.-H., K. Lee, P. Tishchenko, D.-H. Min, M. J. Warner, L. D. Talley, D.-J. Kang, and K.-R. Kim (2006), Large accumulation of anthropogenic CO2 in the East (Japan) Sea and its significant impact on carbonate chemistry, Global Biogeochemical Cycles, 20(4), GB4013, doi:10.1029/2005gb002676. Pierrot, D., E. Lewis, and D. W. R. Wallace (2006), MS Excel program developed for CO2 system calculations, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee., ORNL/CDIAC-105a. Riebesell, U., I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe, and F. M. M. Morel (2000), Reduced calcification of marine plankton in response to increased atmospheric CO2, Nature, 407, 364-367. Santana-Casiano, J. M., M. González-Dávila, M.-J. Rueda, O. Llinás, and E.-F. González-Dávila (2007), The interannual variability of oceanic CO2 parameters in the northeast Atlantic subtropical gyre at the ESTOC site, Global Biogeochemical Cycles, 21(1), n/a-n/a, doi:10.1029/2006gb002788. Schlitzer, R. (2013), Ocean Data View, http://odv.awi.de/. Senjyu, T. (1999), The Japan Sea Intermediate Water; Its characteristics and circulation, Journal of Oceanography, 55, 111-122. Sudo, H. (1986), A note on the Japan Sea Proper Water, Progress in Oceanography, 17, 313-336. Watanabe, Y. W., J. Nishioka, M. Shigemitsu, A. Mimura, and T. Nakatsuka (2009), Influence of riverine alkalinity on carbonate species in the Okhotsk Sea, Geophysical Research Letters, 36(15), n/a-n/a, doi:10.1029/2009gl038520. Watanabe, Y. W., M. Wakita, and N. Maeda (2003), Synchronous bidecadal periodic changes of oxygen, phosphate and temperature between the Japan Sea deep water and the North Pacific intermediate water, Geophysical Research Letters, 30(24), doi:10.1029/2003gl018338. Whiteley, N. M. (2011), Physiological and ecological responses of crustaceans to ocean acidification, Marine Ecology Progress Series, 430, 257-271, doi:10.3354/meps09185. 網路資料: National Aeronautics and Space Administration (NASA), Global annual mean surface air temperature change: http://data.giss.nasa.gov/gistemp/graphs_v3/ National Oceanic and Atmospheric Administration (NOAA), Full Mauna Loa CO2 record: http://www.esrl.noaa.gov/gmd/ccgg/trends/ National Oceanographic Data Center (NODC), World database: http://www.nodc.noaa.gov/OC5/WOD/pr_wod.html 日本氣象廳,海洋気象観測船による海洋・海上気象観測資料: http://www.data.kishou.go.jp/kaiyou/db/vessel_obs/data-report/html/ship/ship.php |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |